诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (04): 323-331.doi: 10.16150/j.1671-2870.2023.04.001
• 专家论坛 • 下一篇
收稿日期:
2023-05-10
出版日期:
2023-08-25
发布日期:
2023-12-18
通讯作者:
李庆云 E-mail:基金资助:
DING Yongjie, ZHANG Liu, LI Qingyun()
Received:
2023-05-10
Online:
2023-08-25
Published:
2023-12-18
摘要:
肿瘤相关血栓(cancer-associated thrombosis,CAT)是肿瘤患者的第二大死亡原因,仅次于肿瘤自身进展,并可导致患者住院时间延长和再住院,造成严重的社会医疗负担。JAK2、ALK、KRAS突变等肿瘤特异性基因突变与实体肿瘤患者的CAT风险密切相关。接受免疫检查点抑制剂治疗的患者有很高的CAT风险,1年的累计发病率为10.86%。因此,准确的风险评估至关重要。Khorana评分(Khorana risk score,KRS)是首个评估CAT风险的模型,并已在多项研究中得到验证。新一代模型是基于KRS的升级改良,如Vienna CAT模型、PROTECHT模型、CONKO模型,但尚未经过大规模的外部验证。由于肿瘤与CAT密切相关,国内外制定了多个CAT相关预防指南,均建议肿瘤术后患者接受预防性抗凝治疗。低分子肝素(low molecular weight heparin,LMWH)是最广泛用于预防CAT的抗凝药物,新型口服抗凝药物(new oral anticoagulants,NOAC)亦被用于CAT预防。预防性抗凝治疗虽有导致大出血发生率增加的风险,但患者总体获益大于风险。治疗CAT的策略复杂,NOAC可作为非消化道肿瘤患者的一线药物,而胃肠道肿瘤患者抗凝首选LMWH。由于CAT患者同时接受抗凝治疗与抗肿瘤治疗,故需考虑药物间的相互作用,注意避免药物所致的出血,尤其是联合用药对NOAC药代动力学的影响。目前尚不明确CAT抗凝治疗的最佳持续时间,指南均建议CAT初发患者完成3~6个月抗凝治疗后,应继续接受无限期的抗凝。医师在确定肿瘤患者的抗凝疗程时,应评估血栓复发风险、出血风险,优化治疗方案。
中图分类号:
丁永杰, 张柳, 李庆云. 肿瘤相关静脉血栓栓塞症的防治新认识[J]. 诊断学理论与实践, 2023, 22(04): 323-331.
DING Yongjie, ZHANG Liu, LI Qingyun. New knowledge of prophylaxis and treatment about cancer-associated thrombosis[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(04): 323-331.
表1
NCCN(2021年版)肿瘤患者VTE危险因素
肿瘤患者VTE危险因素 |
---|
患者因素 合并症(肥胖、感染、肾脏疾病、肺疾病、动脉血栓等) 既往VTE病史 血小板增多症[血小板计数>350×109/L(化疗前)] 白细胞增多[白细胞计数>11.0×109/L(化疗前)] 贫血(血红蛋白<10 g/dL) 肥胖(体质量指数>35 kg/m2) 遗传性易栓症 |
肿瘤因素 原发灶(胃、脑、肺、肾、妇科、膀胱、血液) 肿瘤活动期 肿瘤晚期(发生远处转移) |
治疗因素 近期大手术 近期住院 化疗药物(如蛋白酶抑制剂) 外源性激素治疗(雌激素、莫西芬/雷洛昔芬、己烯雌酚等) 抗血管生成治疗(沙力度胺、来那度胺、贝伐单抗) 促红细胞生成素 中央静脉置管 |
表2
常用肿瘤相关血栓风险评估模型(分)
项目 | Khorana评分 | Vienna CATS评分 | PROTECHT评分 | CONKO评分 |
---|---|---|---|---|
胰腺癌、胃癌 | 2 | 2 | 2 | 2 |
肺癌、淋巴瘤,妇科恶性肿瘤,膀胱癌,睾丸癌 | 1 | 1 | 1 | 1 |
化疗前血红蛋白<10 g/dL或使用促红细胞生成素 | 1 | 1 | 1 | 1 |
化疗前白细胞计数>11×109/L | 1 | 1 | 1 | 1 |
化疗前血小板计数≥350×109/L | 1 | 1 | 1 | 1 |
体重指数>35 kg/m2 | 1 | 1 | 1 | / |
D-二聚体>1.44 mg/L | / | 1 | / | / |
可溶性P-选择素>53.1 ng/L | / | 1 | / | / |
铂类或吉西他滨化疗 | / | / | 1 | / |
世界卫生组织功能状态评分≥2分 | / | / | / | 1 |
[1] |
RASKOB G E, ANGCHAISUKSIRI P, BLANCO A N, et al. Thrombosis: a major contributor to global disease burden[J]. Arterioscler Thromb Vasc Biol, 2014, 34(11):2363-2371.
doi: 10.1161/ATVBAHA.114.304488 pmid: 25304324 |
[2] |
MULDER F I, HORVÁTH-PUHÓ E, VAN ES N, et al. Venous thromboembolism in cancer patients: a population-based cohort study[J]. Blood, 2021; 137(14):1959-1969.
doi: 10.1182/blood.2020007338 pmid: 33171494 |
[3] |
GEROTZIAFAS G T, MAHÉ I, LEFKOU E, et al. Overview of risk assessment models for venous thromboembolism in ambulatory patients with cancer[J]. Thromb Res, 2020, 191(Suppl 1): 50-57.
doi: 10.1016/j.thromres.2020.04.030 URL |
[4] |
WALKER A J, WEST J, CARD T R, et al. When are breast cancer patients at highest risk of venous thromboembolism? A cohort study using English health care data[J]. Blood, 2016, 127(7): 849-857,953.
doi: 10.1182/blood-2015-01-625582 pmid: 26574606 |
[5] |
KHORANA A A, KUDERER N M, CULAKOVA E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis[J]. Blood, 2008, 111(10): 4902-4907.
doi: 10.1182/blood-2007-10-116327 pmid: 18216292 |
[6] |
KHORANA A A, MACKMAN N, FALANGA A, et al. Cancer-associated venous thromboembolism[J]. Nat Rev Dis Primers, 2022, 8(1):11.
doi: 10.1038/s41572-022-00336-y pmid: 35177631 |
[7] |
MOIK F, AY C, PABINGER I. Risk prediction for cancer-associated thrombosis in ambulatory patients with cancer: past, present and future[J]. Thromb Res, 2020, 191(Suppl 1):S3-S11.
doi: 10.1016/S0049-3848(20)30389-3 URL |
[8] |
ROOPKUMAR J, SWAIDANI S, KIM A S, et al. Increased incidence of venous thromboembolism with cancer immunotherapy[J]. Med, 2021, 2(4):423-434.
doi: 10.1016/j.medj.2021.02.002 pmid: 34036293 |
[9] |
ROTUNNO G, MANNARELLI C, GUGLIELMELLI P, et al. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact ofcalreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia[J]. Blood, 2014, 123(10):1552-1555.
doi: 10.1182/blood-2013-11-538983 URL |
[10] |
DUNBAR A, BOLTON K L, DEVLIN S M, et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors[J]. Blood, 2021, 137(15):2103-2113.
doi: 10.1182/blood.2020007488 pmid: 33270827 |
[11] | STREIFF M B, HOLMSTROM B, ANGELINI D, et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw. 2021, 19(10):1181-1201. |
[12] |
M VERSO, G AGNELLI, S BARNI, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score[J]. Intern Emerg Med, 2012, 7(3): 291-292.
doi: 10.1007/s11739-012-0784-y pmid: 22547369 |
[13] |
AY C, DUNKLER D, MAROSI C, et al. Prediction of venous thromboembolism in cancer patients[J]. Blood, 2010, 116(24):5377-5382.
doi: 10.1182/blood-2010-02-270116 pmid: 20829374 |
[14] |
GEROTZIAFAS G T, TAHER A, ABDEL-RAZEQ H, et al. A predictive score for throm- bosis associated with breast, colorectal, lung or ovarian cancer. The prospective COMPASS-Cancer Associated Thrombosis study[J]. Oncologist, 2017, 22(10): 1222-1231.
doi: 10.1634/theoncologist.2016-0414 URL |
[15] |
RUPA-MATYSEK J, LEMBICZ M, ROGOWSKA E K, et al. Evaluation of risk factors and assessment models for predicting venous thromboembolism in lung cancer patients[J]. Med Oncol, 2018, 35(5):63.
doi: 10.1007/s12032-018-1120-9 |
[16] |
XIONG W, ZHAO Y, DU H, et al. Optimal authoritative risk assessment score of Cancer-associated venous thromboembolism for hospitalized medical patients with lung Cancer. Thromb J, 2021, 19(1):95.
doi: 10.1186/s12959-021-00339-x pmid: 34863189 |
[17] |
YMAN G H, CARRIER M, AY C, et al. American Socie-ty of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer[J]. Blood Adv, 2021, 5(4):927-974.
doi: 10.1182/bloodadvances.2020003442 URL |
[18] |
KEY N S, KHORANA A A, KUDERER N M, et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update[J]. J Clin Oncol, 2020, 38(5):496-520.
doi: 10.1200/JCO.19.01461 pmid: 31381464 |
[19] |
KHORANA A A, DESANCHO M T, LIEBMAN H, et al. Prediction and Prevention of Cancer-Associated Thromboembolism[J]. Oncologist, 2021, 26(1):e2-e7.
doi: 10.1002/onco.13569 pmid: 33274815 |
[20] |
BEN-AHARON I, STEMMER S M, LEIBOVICI L, et al. Low molecular weight heparin (LMWH) for primary thrombo-prophylaxis in patients with solid malignancies - systematic review and meta-analysis[J]. Acta Oncol, 2014, 53(9):1230-1237.
doi: 10.3109/0284186X.2014.934397 URL |
[21] | DI NISIO M, PORRECA E, CANDELORO M, et al. Primary prophylaxis for venous thromboembolism in ambulatory cancer patients receiving chemotherapy[J]. 2016, 12(12):CD008500. |
[22] |
CARRIER M, ABOU-NASSAR K, MALLICK R, et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer[J]. N Engl J Med, 2019, 380(8):711-719.
doi: 10.1056/NEJMoa1814468 URL |
[23] |
KHORANA A A, SOFF G A, KAKKAR A K, et al. Riva-roxaban for thromboprophylaxis in high-risk ambulatory patients with cancer[J]. N Engl J Med, 2019, 380(8):720-728.
doi: 10.1056/NEJMoa1814630 URL |
[24] |
LI A, CARLSON J J, KUDERER N M, et al. Cost-effectiveness analysis of low-dose direct oral anticoagulant (DOAC) for the prevention of cancer-associated thrombosis in the United States[J]. Cancer, 2020, 126(8):1736-1748.
doi: 10.1002/cncr.32724 pmid: 31999844 |
[25] |
PRANDONI P, LENSING A W, PICCIOLI A, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood, 2002, 100(10):3484-3488.
doi: 10.1182/blood-2002-01-0108 pmid: 12393647 |
[26] |
LEE A Y, LEVINE M N, BAKER R I, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer[J]. N Engl J Med, 2003, 349(2):146-153.
doi: 10.1056/NEJMoa025313 URL |
[27] |
CARRIER M, CAMERON C, DELLUC A, et al. Efficacy and safety of anticoagulant therapy for the treatment of acute cancer-associated thrombosis: a systematic review and meta-analysis[J]. Thromb Res, 2014, 134(6):1214-1219.
pmid: 25457583 |
[28] |
YOUNG A M, MARSHALL A, THIRLWALL J, et al. Comparison of an oral factor xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D)[J]. J Clin Oncol, 2018, 36(20):2017-2023.
doi: 10.1200/JCO.2018.78.8034 pmid: 29746227 |
[29] |
KRAAIJPOEL N, DI NISIO M, MULDER F I, et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: results from the Hokusai VTE Cancer Study[J]. Thromb Haemost, 2018, 118(8):1439-1449.
doi: 10.1055/s-0038-1667001 URL |
[30] | FRERE C, FARGE D, SCHRAG D, et al. Direct oral anticoagulant versus low molecular weight heparin for the treatment of cancer-associated venous thromboembolism: 2022 updated systematic review and meta-analysis of randomized controlled trials[J]. J Hematol Oncol, 2022 15(1):69. |
[31] |
STEVENS S M, WOLLER S C, KREUZIGER L B, et al. Antithrombotic therapy for VTE disease: second update of the CHEST Guideline and Expert Panel Report[J]. Chest, 2021, 160(6):e545-e608.
doi: 10.1016/j.chest.2021.07.055 pmid: 34352278 |
[32] |
GIUSTOZZI M, PROIETTI G, BECATTINI C, et al. ICH in primary or metastatic brain cancer patients with or without anticoagulant treatment: a systematic review and meta-analysis[J]. Blood Adv, 2022, 6(16):4873-4883.
doi: 10.1182/bloodadvances.2022008086 pmid: 35772127 |
[33] |
CARNEY BJ, UHLMANN EJ, PULIGANDLA M, et al. Intracranial hemorrhage with direct oral anticoagulants in patients with brain tumors[J]. J Thromb Haemost, 2019, 17(1):72-76.
doi: 10.1111/jth.14336 pmid: 30450803 |
[34] |
SWARTZ AW, DRAPPATZ J. Safety of direct oral anticoagulants in central nervous system malignancies[J]. Oncologist. 2021; 26(5):427-432.
doi: 10.1002/onco.13698 pmid: 33523555 |
[35] |
FALANGA A, LEADER A, AMBAGLIO C, et al. EHA guidelines on management of antithrombotic treatments in thrombocytopenic patients with cancer[J]. Hemasphere, 2022, 6(8):e750.
doi: 10.1097/HS9.0000000000000750 pmid: 35924068 |
[36] |
HSU C, PATELL R, ZWICKER J I. The prevalence of thrombocytopenia in patients with acute cancer-associa-ted thrombosis[J]. Blood Adv, 2023, 7(17):4721-4727.
doi: 10.1182/bloodadvances.2022008644 URL |
[37] |
YEOMANS N D, GRAHAM D Y, HUSNI M E, et al. Randomised clinical trial: gastrointestinal events in arthritis patients treated with celecoxib, ibuprofen or naproxen in the PRECISION trial[J]. Aliment Pharmacol Ther, 2018, 47(11):1453-1463.
doi: 10.1111/apt.2018.47.issue-11 URL |
[38] | SCALLY B, EMBERSON J R, SPATA E, et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: a meta-analysis of randomised trials[J]. Lancet Gastroenterol Hepatol, 2018, 3(4):231-241. |
[39] |
STEFFEL J, VERHAMME P, POTPARA T S, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoa-gulants in patients with atrial fibrillation[J]. Eur Heart J. 2018, 39(16):1330-1393.
doi: 10.1093/eurheartj/ehy136 URL |
[40] |
KANURI S H, KREUTZ R P. Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants[J]. J Pers Med, 2019, 9(1):7.
doi: 10.3390/jpm9010007 URL |
[41] |
LAPÉBIE F X, BURA-RIVIÈRE A, ESPITIA O, et al. Predictors of recurrence of cancer-associated venous thromboembolism after discontinuation of anticoagulant therapy: a multicenter cohort study[J]. J Thromb Haemost, 2023, 21(8):2189-2201.
doi: 10.1016/j.jtha.2023.04.010 URL |
[42] |
LOUZADA M L, CARRIER M, LAZO-LANGNER A, et al. Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism[J]. Circulation, 2012, 126(4):448-454.
doi: 10.1161/CIRCULATIONAHA.111.051920 pmid: 22679142 |
[43] |
NISHIMOTO Y, YAMASHITA Y, MORIMOTO T, et al. Predictive ability of modified Ottawa score for recurrence in patients with cancer-associated venous thromboembolism: From the COMMAND VTE Registry[J]. Thromb Res, 2020, 191:66-75.
doi: S0049-3848(20)30161-4 pmid: 32402995 |
[44] |
FRERE C, CRICHI B, WAHL C, et al. The ottawa score performs poorly to identify cancer patients at high risk of recurrent venous thromboembolism: insights from the TROPIQUE study and updated meta-analysis[J]. J Clin Med, 2022, 11(13):3729.
doi: 10.3390/jcm11133729 URL |
[45] |
JARA-PALOMARES L, SOLIER-LOPEZ A, ELIAS-HERNANDEZ T, et al. Tinzaparin in cancer associated thrombosis beyond 6months: TiCAT study[J]. Thromb Res. 2017, 157:90-96.
doi: 10.1016/j.thromres.2017.07.004 URL |
[46] |
FRANCIS C W, KESSLER C M, GOLDHABER S Z, et al. Treatment of venous thromboembolism in cancer patients with dalteparin for up to 12 months: the DALTECAN Study[J]. J Thromb Haemost, 2015, 13(6):1028-1035.
doi: 10.1111/jth.12923 pmid: 25827941 |
[1] | 李一林, 陈杨, 李艳艳, 冯旭娇, 章程, 李健, 沈琳. 循环肿瘤细胞检测在常见恶性肿瘤精准医学中的应用和展望[J]. 诊断学理论与实践, 2023, 22(04): 332-340. |
[2] | 王砚春, 卢仁泉. 出凝血检测在肿瘤患者中的应用价值探讨[J]. 诊断学理论与实践, 2023, 22(04): 341-347. |
[3] | 张兰兰, 杨巧, 聂尊珍, 郭英. 胸膜SMARCA4缺失未分化肿瘤1例报告[J]. 诊断学理论与实践, 2023, 22(04): 389-392. |
[4] | 刘益飞. DNA甲基化检测助力肿瘤早期筛查和诊断[J]. 诊断学理论与实践, 2023, 22(04): 393-401. |
[5] | 杨巧, 付欣, 王哲, 刘坦坦. 甲状腺继发性肿瘤细胞病理学特征[J]. 诊断学理论与实践, 2023, 22(03): 270-276. |
[6] | 陈国群, 蔡姣迪. 2022年美国国立综合癌症网络(NCCN)《非小细胞肺癌临床诊疗指南》(第4版及第5版)解读[J]. 诊断学理论与实践, 2023, 22(01): 8-13. |
[7] | 巴福华, 钟鸣, 陈影, 陈尔真. 再喂养综合征的临床防治进展[J]. 诊断学理论与实践, 2023, 22(01): 80-84. |
[8] | 张天羽, 周东, 洪桢. 《儿童抗NMDAR脑炎治疗的国际共识推荐》解读[J]. 诊断学理论与实践, 2022, 21(06): 677-683. |
[9] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[10] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[11] | 车稳, 柳蒋书, 陈晓炎, 王朝夫, 袁菲, 王璇. 肺混合性鳞状细胞和腺性乳头状瘤2例临床病理特征及冷冻切片病理诊断误诊分析[J]. 诊断学理论与实践, 2022, 21(04): 476-481. |
[12] | 马雪菲, 王学锋, 王侃侃. 浆细胞瘤变异体易位1和MYC基因在泛癌中的表达及生存期预测价值分析[J]. 诊断学理论与实践, 2022, 21(04): 490-496. |
[13] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[14] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[15] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||