诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (04): 407-411.doi: 10.16150/j.1671-2870.2023.04.013
• 综述 • 上一篇
潘晓园1,2a, 石慧2a, 曹季军1, 施新明2b, 史册2b()
收稿日期:
2023-06-25
出版日期:
2023-08-25
发布日期:
2023-12-18
通讯作者:
史册 E-mail: 基金资助:
PAN Xiaoyuan1,2a, SHI Hui2a, CAO Jijun1, SHI Xinming2b, SHI Ce2b()
Received:
2023-06-25
Online:
2023-08-25
Published:
2023-12-18
摘要:
M蛋白是一种特殊的免疫球蛋白,其存在可能影响一些临床血液检验项目的实验室检测结果。M蛋白的干扰存在于检验前、检验中和检验后,严重影响其他检测项目的准确性。在血清肌酐、尿酸、脂蛋白、总蛋白、胆红素、血糖、血磷、血红蛋白、糖化白蛋白检测中,高浓度的M蛋白可造成结果出现假性高值或假性低值;在25-OH维生素D、促甲状腺素、C反应蛋白、万古霉素、庆大霉素、丙戊酸钠药物浓度的检测中,M蛋白的异常存在干扰了实际检测结果。针对以上问题,解决方案包括如检验前稀释血清或去除蛋白、检验中使用蛋白稳定剂或优化反应条件等。临床上,还可以发现隐匿性的M蛋白,能够在疾病发生前有效检出M蛋白,对于疾病的治疗和预后发展都将出现新的转机。
中图分类号:
潘晓园, 石慧, 曹季军, 施新明, 史册. M蛋白干扰临床实验室检测项目的研究进展[J]. 诊断学理论与实践, 2023, 22(04): 407-411.
PAN Xiaoyuan, SHI Hui, CAO Jijun, SHI Xinming, SHI Ce. Advancements in M protein interference in the clinical laboratory detection[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(04): 407-411.
表1
M蛋白干扰实验室检测项目总结及改良方法
类别 | 可能出现M蛋白 干扰的检测方法 | 去除M蛋白或 更换检测方法 |
---|---|---|
肌酐 | 酶法(日本Sekisui 医疗试剂) | 高氯酸或超滤去除M蛋白 同位素稀释质谱法 |
尿酸 | 尿酸酶法(奥林巴斯AU800) | 生理盐水稀释,TCA去除M蛋白 |
胆红素 | 重氮法(贝克曼库尔特试剂) | 水稀释,超滤去除M蛋白 钒酸盐氧化法 |
脂蛋白 | 均相直接法(贝克曼Synchron CX-5) | 脂蛋白电泳法 |
总蛋白 | 双缩脲法(贝克曼库尔特试剂) | 双缩脲法(不同厂家试剂) |
血磷 | 磷钼酸盐紫外法(罗氏cobas 8000分析仪) | 20%磺基水杨酸稀释或沉淀M蛋白 |
血糖 | 己糖激酶法(罗氏试剂) | 葡萄糖氧化酶法 |
糖化白蛋白 | 酶法(日本旭化成试剂) | 稀释或聚乙二醇沉淀M蛋白 |
血红蛋白 | 比色法(STK-S分析仪) | 稀释剂1∶1稀释,更换分析仪 |
25-OH维生素D | 化学发光微粒免疫测定(雅培) | 液相色谱串联质谱法 |
促甲状腺素 | 酶免疫分析法(雅培AxSYM TSH检测) | 时间分辨免疫荧光测定,电化学发光法) |
C反应蛋白 | 免疫比浊法(罗氏模块化体统) | 特定抗体去除M蛋白 |
万古霉素 | 免疫分析法(荧光偏振免疫分析,比浊法,酶联免疫分析法) | 液相色谱串联质谱 |
[1] |
COWAN A J, GREEN D J, KWOK M, et al. Diagnosis and management of multiple myeloma: a review[J]. JAMA, 2022, 327(5):464-477.
doi: 10.1001/jama.2022.0003 pmid: 35103762 |
[2] |
LANDGREN O. Advances in MGUS diagnosis, risk stratification, and management: introducing myeloma-defining genomic events[J]. Hematology Am Soc Hematol Educ Program, 2021, 2021(1):662-672.
doi: 10.1182/hematology.2021000303 pmid: 34889381 |
[3] | MASE H, HAMANO N, MIZUHARA R, et al. Falsely Elevated Serum Creatinine Associated With IgM Paraproteinemia[J]. Kidney Int Rep, 2019, 5(3):377-381. |
[4] |
SHIMAMURA Y, MAEDA T, OGAWA Y, et al. Unusual manifestation of monoclonal gammopathy of undetermined significance: a false serum creatinine elevation[J]. CEN Case Rep, 2020, 9(2):109-113.
doi: 10.1007/s13730-019-00438-9 |
[5] |
NAUTI A, BARASSI A, MERLINI G, et al. Paraprotein interference in an assay of conjugated bilirubin[J]. Clin Chem, 2005, 51(6):1076-1077.
pmid: 15914800 |
[6] |
LANGMAN L J, ALLEN L C, ROMASCHIN A D. Interference of IgM paraproteins in the Olympus AU800 uric acid assay[J]. Clin Biochem, 1998, 31(7):517-521.
pmid: 9812170 |
[7] | YILMAZ N S, SEN B, GULBAHAR O. Contribution of the laboratory to a diagnosis process by sequential reflective testing: Paraprotein interference on a direct bilirubin assay[J]. Biochem Med (Zagreb), 2021, 31(2):020801. |
[8] |
SONG L, TONG K H, CHIN C D. Gelation of monoclonal protein was the cause of interference with a total bilirubin assay[J]. J Appl Lab Med, 2019, 3(6):1054-1058.
doi: 10.1373/jalm.2018.026575 pmid: 31639697 |
[9] |
MELVILLE A, THOMAS S D C. Paraprotein interference of automated total bilirubin measurement[J]. Pathology, 2022, 54(3):365-367.
doi: 10.1016/j.pathol.2021.04.010 URL |
[10] |
TSAI L Y, TSAI S M, LEE S C, et al. Falsely low LDL-cholesterol concentrations and artifactual undetectable HDL-cholesterol measured by direct methods in a patient with monoclonal paraprotein[J]. Clin Chim Acta, 2005, 358(1-2):192-195.
doi: 10.1016/j.cccn.2005.02.008 URL |
[11] |
MONK C, WALLAGE M, WASSELL J, et al. A monoclonal protein identified by an anomalous lipaemia index[J]. Ann Clin Biochem, 2009, 46(Pt 3):250-252.
doi: 10.1258/acb.2008.008192 pmid: 19261678 |
[12] | TICHY M, FRIEDECKY B, BUDINA M, et al. Interfe-rence of IgM-lambda paraprotein with biuret-type assay for total serum protein quantification[J]. Clin Chem Lab Med, 2009, 47(2):235-236. |
[13] |
KRITMETAPAK K, DUMRONGSUKIT S, JINCHAI J, et al. Pseudohyperphosphatemia in a patient with relapsed multiple myeloma after bone marrow transplantation: a case report[J]. Clin Case Rep, 2019, 7(7):1426-1429.
doi: 10.1002/ccr3.2019.7.issue-7 URL |
[14] |
KIKI I, GUNDOGDU M, KAYA H. Spuriously high phosphate level which is promptly resolved after plasmaphe-resis in a patient with multiple myeloma[J]. Transfus Apher Sci, 2007, 37(2):157-159.
doi: 10.1016/j.transci.2007.07.005 URL |
[15] |
BOSSARD V, SAUVAGEON Y, FRAISSINET F, et al. False paraprotein-induced hypoglycemia in the measurement of glucose by the hexokinase method[J]. Ann Biol Clin (Paris), 2019, 77(4):439-445.
doi: 10.1684/abc.2019.1465 pmid: 31418706 |
[16] |
KURAMOTO N, WAKAHARA T, TAMAGAWA Y, et al. A case of monoclonal gammopathy of undetermined significance with abnormal low levels of plasma glycated albumin by M protein[J]. Clin Chim Acta, 2018, 487:337-340.
doi: S0009-8981(18)30544-8 pmid: 30317021 |
[17] |
ROBERTS W L, FONTENOT J D, LEHMAN C M. Overe-stimation of hemoglobin in a patient with an IgA-kappa monoclonal gammopathy[J]. Arch Pathol Lab Med, 2000, 124(4):616-618.
doi: 10.5858/2000-124-0616-OOHIAP URL |
[18] |
ONG M W, SALOTA R, REEMAN T, et al. Artefactual 25-OH vitamin D concentration in multiple myeloma[J]. Ann Clin Biochem, 2017, 54(6):716-720.
doi: 10.1177/0004563217690175 pmid: 28068803 |
[19] |
HAGER H B, BOLSTAD N, WARREN D J, et al. Falsely markedly elevated 25-hydroxyvitamin D in patients with monoclonal gammopathies[J]. Clin Chem Lab Med, 2020, 59(4):663-669.
doi: 10.1515/cclm-2020-1411 URL |
[20] |
LUZZI V I, SCOTT M G, GRONOWSKI A M. Negative thyrotropin assay interference associated with an IgGkappa paraprotein[J]. Clin Chem, 2003, 49(4):709-710.
pmid: 12651842 |
[21] |
YU A, PIRA U. False increase in serum C-reactive protein caused by monoclonal IgM-lambda: a case report[J]. Clin Chem Lab Med, 2001, 39(10):983-987.
pmid: 11758616 |
[22] |
LEGATT D F, BLAKNEY G B, HIGGINS T N, et al. The effect of paraproteins and rheumatoid factor on four commercial immunoassays for vancomycin: implications for laboratorians and other health care professionals[J]. Ther Drug Monit, 2012, 34(3):306-311.
doi: 10.1097/FTD.0b013e318257335f URL |
[23] | DIMESKI G, BASSETT K, BROWN N. Paraprotein interference with turbidimetric gentamicin assay[J]. Biochem Med (Zagreb), 2015, 25(1):117-124. |
[24] |
FORNI G L, PINTO V, MUSSO M, et al. Transferrin-immune complex disease: a potentially overlooked gammopathy mediated by IgM and IgG[J]. Am J Hematol, 2013, 88(12):1045-1049.
doi: 10.1002/ajh.23558 pmid: 23913829 |
[25] |
KHANT M, FLORKOWSKI C, LIVESEY J, et al. Insulin autoimmune syndrome due to IgG kappa paraprotein[J]. Pathology, 2004, 36(1):86-87.
doi: 10.1080/00313020310001643624 URL |
[26] |
WU X Y, YIN Y F, TENG J L, et al. IgMk paraprotein from gammopathy patient can bind to cardiolipin and interfere with coagulation assay: a case report[J]. BMC Immunol, 2017, 18(1):32.
doi: 10.1186/s12865-017-0213-0 URL |
[27] |
VON LANDENBERG P, SCHÖLMERICH J, ANDREESEN R, et al. A case of Waldenstroem's disease with a monoclonal IgM antiphospholipid antibody[J]. Rheumatol Int, 2002, 22(3):129-131.
pmid: 12111091 |
[28] |
DJUNIC I, ELEZOVIC I, ILIC V, et al. The effect of paraprotein on platelet aggregation[J]. J Clin Lab Anal, 2014, 28(2):141-146.
doi: 10.1002/jcla.21658 pmid: 24395751 |
[29] |
DJUNIC I, ELEZOVIC I, VUCIC M, et al. Specific bin-ding of paraprotein to platelet receptors as a cause of platelet dysfunction in monoclonal gammopathies[J]. Acta Haematol, 2013, 130(2):101-107.
doi: 10.1159/000345418 URL |
[30] |
RANI P, KUMAR T, KUMAR S, et al. IgA monoclonal gammopathy with pseudohyperphosphatemia[J]. Indian J Clin Biochem, 2022, 37(1):119-123.
doi: 10.1007/s12291-020-00911-8 |
[1] | 范春丽, 吴涛, 薛锋, 胡文雪, 王存邦, 白海. MUM1/IRF4阳性弥漫大B细胞淋巴瘤一例治疗报告并文献复习[J]. 诊断学理论与实践, 2021, 20(04): 399-400. |
[2] | 周晓娜, 方宏罡, 曹艳菲, 李新娜, 张丽娜, 陆怡德. 尿酸酶-过氧化物酶偶联反应检测血清尿酸过程中的干扰分析[J]. 诊断学理论与实践, 2020, 19(04): 426-429. |
[3] | 康凯, 曹久妹. 利伐沙班抗凝效果评估方法的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 218-222. |
[4] | 何梅芳, 刘健红, 陈春华, 申红玉. 全血γ-干扰素释放试验与ELISA检测结核分枝杆菌抗体在痰菌阴性肺结核辅助诊断中的比较应用[J]. 诊断学理论与实践, 2018, 17(05): 586-589. |
[5] | 陆世娟, 尚庆毅, 蒋志红, 陈同排, 张小庆. IP-10联合PCT和hs-CRP检测对新生儿感染性疾病的诊断价值[J]. 诊断学理论与实践, 2018, 17(03): 304-307. |
[6] | 陈美蓉, 郭起浩, 刘晓红, 洪震,. 正常老年人中Stroop色词干扰测验和连线测验稳定性的2年随访观察研究[J]. 诊断学理论与实践, 2015, 14(05): 446-450. |
[7] | 张青,. 干扰素γ释放试验在结核病高负担国家中的临床应用价值[J]. 诊断学理论与实践, 2015, 14(05): 412-415. |
[8] | 张冬青,. 干扰素-β/抗白细胞介素-6受体单抗干预类风湿关节炎机制的新认识[J]. 诊断学理论与实践, 2015, 14(02): 99-104. |
[9] | 王鸿利,. 重视贫血的实验诊断和鉴别诊断[J]. 诊断学理论与实践, 2014, 13(06): 557-560. |
[10] | 万颖蕾, 陈长强, 梁璆荔, 顾志冬,. 二例H7N9禽流感病毒感染患者实验室检测分析报告[J]. 诊断学理论与实践, 2014, 13(05): 542-546. |
[11] | 周盈盈, 周桢源, 黄新芳, 沈南,. miR-363-3p促进人浆细胞样树突细胞干扰素α分泌的机制研究[J]. 诊断学理论与实践, 2014, 13(03): 255-259. |
[12] | 陈呢喃, 赵蓉, 周晓薇, 苗平, 许荣, 张冬青,. 干扰素β通过RANK/RANKL信号分子调控胶原抗体诱导关节炎小鼠的分子学机制[J]. 诊断学理论与实践, 2014, 13(01): 61-67. |
[13] | 熊立凡, 姚依婷, 王鸿利,. 解读血管性血友病的诊断指南[J]. 诊断学理论与实践, 2012, 11(01): 25-29. |
[14] | 韩宇, 汪登斌, 姜婷婷, 李志, 史曙光,. MRI表观弥散系数值评价大鼠肝纤维化干扰素INFα-2b治疗疗效的研究[J]. 诊断学理论与实践, 2011, 10(04): 335-339. |
[15] | 宋斌斌, 沈敏娜, 张春燕, 吴炯, 郭玮, 潘柏申,. 2种检测乙型肝炎病毒表面抗原的酶联免疫吸附试验试剂盒的性能比较[J]. 诊断学理论与实践, 2010, 9(02): 186-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||