诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (05): 413-420.doi: 10.16150/j.1671-2870.2023.05.001
收稿日期:
2023-10-23
出版日期:
2023-10-25
发布日期:
2024-03-15
通讯作者:
王书奎 E-mail: 基金资助:
Received:
2023-10-23
Online:
2023-10-25
Published:
2024-03-15
摘要:
转运RNA(transfer RNA,tRNA)可结合相应的氨基酸,并将其运送到核糖体上,促进蛋白质的翻译。tRNA衍生的小RNA(transfer RNA-derived small RNA,tsRNA)是tRNA被切割而产生的。tsRNA具有重要的生物学功能,可发挥调节基因表达和调控蛋白质翻译等作用。近年来,研究揭示了tsRNA在癌症中的双重调控作用,特别是其在癌症患者体液中的显著差异性,强调了tsRNA作为一种潜在的肿瘤诊断和预后评估生物标志物的重要性。结直肠癌相关tsRNA中, 5'tiRNA-His-GTG上调可促进肿瘤的发生和发展;由血管生成素切割产生的5′-tiRNA-Val上调,促进肿瘤转移和生长; tRF-20-MEJB5Y13上调,可促进结直肠癌细胞迁移和侵袭。胃癌相关tsRNA中,tRF-19-3L7L73JD上调可促进恶性肿瘤的进展,而tRF-24-V29K9UV3IU、tRF-5026a和tRF-Val上调可抑制肿瘤的增殖及进展。临床应用方面,血浆5-tRF-GlyGCC表达升高,诊断结直肠癌的曲线下面积达0.882,血浆tRF-5026a下降,诊断结直肠癌曲线下面积为0.883。胃癌患者血清tRF-27-FDXXE6XRK45、tRF-29-R9J8909NF5JP和tRF-23-Q99P9P9NDD的表达显著升高,诊断胃癌曲线下面积分别为0.805、0.889和0.783;三阴性乳腺癌血清中tDR‐000620下降,与淋巴结转移和疾病复发相关。胃癌患者的血浆外泌体中,tRF-38、tRF-25和tRF-18表达升高,这些指标可用于诊断胃癌,且可能是术后预测因子;肝癌患者血浆外泌体的tRNA-ValTAC-3、tRNA-GlyTCC-5、tRNA-ValAAC-5和tRNA-GluCTC-5的表达水平明显增加,可能是新兴的标志物。本文综述了tsRNA的生成、分类及生物学功能,重点阐述tsRNA作为肿瘤标志物的研究进展以及其在不同肿瘤中发挥的作用。
中图分类号:
王书奎, 顾心亮. tsRNA作为肿瘤诊断和预后标志物的研究进展[J]. 诊断学理论与实践, 2023, 22(05): 413-420.
WANG Shukui, GU Xinliang. Advances in the study of tsRNA as diagnostic and prognostic biomarkers in cancer[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 413-420.
表1
癌症中tsRNA的失调及相关作用
tsRNA名称 | 癌症类型 | 表达 | 功能作用 | 参考文献 |
---|---|---|---|---|
5'tiRNA-His-GTG | 结直肠癌 | 上调 | 靶向LATS2抑制Hippo信号通路,促进增殖和抗凋亡相关基因的表达,促进结直肠癌进展 | [ |
5′-tiRNA-Val | 结直肠癌 | 上调 | 参与了血管生成素促进结直肠癌转移的过程 | [ |
tRF-20-MEJB5Y13 | 结直肠癌 | 上调 | 在缺氧条件下由Dicer1诱导产生,增强结直肠癌细胞的迁移和侵袭能力 | [ |
tRF-3022b | 结直肠癌 | 上调 | 与半乳糖凝集素1和巨噬细胞迁移抑制因子结合,通过调节M2巨噬细胞中的MIF降低极化并影响结直肠癌的生长 | [ |
tRF-19-3L7L73JD | 胃癌 | 下调 | 将胃癌细胞周期阻滞在G0/G1期,诱导细胞凋亡,抑制胃癌细胞增殖和迁移 | [ |
tRF-24-V29K9UV3IU | 胃癌 | 下调 | 调控Wnt信号通路,抑制胃癌细胞的增殖和转移能力 | [ |
tRF-5026a | 胃癌 | 下调 | 调节PTEN/PI3K/AKT信号通路,上调tRF-5026a可以抑制胃癌细胞的增殖和转移 | [ |
tRF-Val | 胃癌 | 上调 | 与EEF1A1结合,介导其转运入核,促进其与一种特异性的p53 E3泛素连接酶相互作用,从而抑制p53下游分子通路,促进胃癌的恶性进展 | [ |
缺氧应激诱导产生的tRF | 乳腺癌 | 下调 | 与YBX1结合,降低YBX1内源性致癌转录本的稳定性,抑制乳腺癌的进展 | [ |
5'-tiRNAVal | 乳腺癌 | 下调 | 与FZD3结合,抑制FZD3/Wnt/β-Catenin信号通路,抑制乳腺癌的进展 | [ |
tRFdb-5024a、5P_tRNA-Leu-CAA-4-1 和 ts-49 | 乳腺癌 | 下调 | 促进乳腺癌的免疫治疗,为乳腺癌治疗提供新的靶点,提高乳腺癌中免疫治疗的水平 | [ |
ts-34 和 ts-58 | 上调 |
[1] |
HAYNE C K, SCHMIDT C A, HAQUE M I, et al. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage[J]. Nucleic Acids Res, 2020, 48(14):7609-7622.
doi: 10.1093/nar/gkaa438 pmid: 32476018 |
[2] |
SCHAFFER A E, PINKARD O, COLLER J M. tRNA Metabolism and Neurodevelopmental Disorders[J]. Annu Rev Genomics Hum Genet, 2019, 20:359-387.
doi: 10.1146/annurev-genom-083118-015334 pmid: 31082281 |
[3] |
ZHU C, SUN B, NIE A, et al. The tRNA-associated dysregulation in immune responses and immune diseases[J]. Acta Physiol (Oxf), 2020, 228(2):e13391.
doi: 10.1111/apha.v228.2 URL |
[4] |
SHEN Y, YU X, ZHU L, et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases[J]. J Mol Med (Berl), 2018, 96(11):1167-1176.
doi: 10.1007/s00109-018-1693-y pmid: 30232504 |
[5] |
GIEGÉ R. Toward a more complete view of tRNA biology[J]. Nat Struct Mol Biol, 2008, 15(10):1007-1014.
doi: 10.1038/nsmb.1498 pmid: 18836497 |
[6] |
RODNINA M V, WINTERMEYER W. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation[J]. Biochem Soc Trans, 2011, 39(2):658-662.
doi: 10.1042/BST0390658 URL |
[7] |
KIM H K, YEOM J H, KAY M A. Transfer RNA-Derived Small RNAs: Another Layer of Gene Regulation and Novel Targets for Disease Therapeutics[J]. Mol Ther, 2020, 28(11):2340-2357.
doi: 10.1016/j.ymthe.2020.09.013 pmid: 32956625 |
[8] |
BOREK E, BALIGA B S, GEHRKE C W, et al. High turnover rate of transfer RNA in tumor tissue[J]. Cancer Res, 1977, 37(9):3362-3366.
pmid: 884680 |
[9] |
SPEER J, GEHRKE C W, KUO K C, et al. tRNA breakdown products as markers for cancer[J]. Cancer, 1979, 44(6):2120-2123.
pmid: 509391 |
[10] |
ZHU L, GE J, LI T, et al. tRNA-derived fragments and tRNA halves: The new players in cancers[J]. Cancer Lett, 2019, 452:31-37.
doi: S0304-3835(19)30168-5 pmid: 30905816 |
[11] | XIE Y, YAO L, YU X, et al. Action mechanisms and research methods of tRNA-derived small RNAs[J]. Signal Transduct Target Ther, 2020, 5(1):109. |
[12] |
RODNINA M V, WINTERMEYER W. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation[J]. Biochem Soc Trans, 2011, 39(2):658-662.
doi: 10.1042/BST0390658 URL |
[13] |
ZHU P, YU J, ZHOU P. Role of tRNA-derived fragments in cancer: novel diagnostic and therapeutic targets tRFs in cancer[J]. Am J Cancer Res, 2020, 10(2):393-402.
pmid: 32195016 |
[14] |
KATSARAKI K, ARTEMAKI P I, PAPAGEORGIOU S G, et al. Identification of a novel, internal tRNA-derived RNA fragment as a new prognostic and screening biomarker in chronic lymphocytic leukemia, using an innovative quantitative real-time PCR assay[J]. Leuk Res, 2019, 87:106234.
doi: 10.1016/j.leukres.2019.106234 URL |
[15] |
KUMAR P, ANAYA J, MUDUNURI S B, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets[J]. BMC Biol, 2014, 12:78.
doi: 10.1186/s12915-014-0078-0 pmid: 25270025 |
[16] | 朱林文, 谢依, 郭俊明. tRNA衍生片段和tRNA半分子的生物学功能及其在疾病发生中的作用[J]. 生物化学与生物物理进展, 2017, 44(7):565-572. |
ZHU L W, XIE Y, GUO J M. The biological functions of tRNA-derived fragments and trna halves, and their roles in the pathogenesis[J]. Prog Biochem Biophys, 2017, 44(7). | |
[17] |
COLE C, SOBALA A, LU C, et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs[J]. RNA, 2009, 15(12):2147-2160.
doi: 10.1261/rna.1738409 pmid: 19850906 |
[18] |
PARK E J, KIM T H. Fine-tuning of gene expression by tRNA-derived fragments during abiotic stress signal transduction[J]. Int J Mol Sci, 2018, 19(2):518.
doi: 10.3390/ijms19020518 URL |
[19] |
LI S, XU Z, SHENG J. tRNA-derived small RNA: a novel regulatory small non-coding RNA[J]. Genes (Basel), 2018, 9(5):246.
doi: 10.3390/genes9050246 URL |
[20] |
LI S, HU G F. Emerging role of angiogenin in stress response and cell survival under adverse conditions[J]. J Cell Physiol, 2012, 227(7):2822-2826.
doi: 10.1002/jcp.23051 pmid: 22021078 |
[21] |
LI S, SHI X, CHEN M, et al. Angiogenin promotes colorectal cancer metastasis via tiRNA production[J]. Int J Cancer, 2019, 145(5):1395-1407.
doi: 10.1002/ijc.32245 pmid: 30828790 |
[22] |
ANDERSON P, IVANOV P. tRNA fragments in human health and disease[J]. FEBS Lett, 2014, 588(23):4297-4304.
doi: 10.1016/j.febslet.2014.09.001 pmid: 25220675 |
[23] |
SAIKIA M, HATZOGLOU M. The many virtues of tRNA-derived stress-induced RNAs (tiRNAs): discovering novel mechanisms of stress response and effect on human health[J]. J Biol Chem, 2015, 290(50):29761-29768.
doi: 10.1074/jbc.R115.694661 pmid: 26463210 |
[24] |
HE L, HANNON G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004, 5(8):631].
doi: 10.1038/nrg1415 |
[25] |
TONG L, ZHANG W, QU B, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer[J]. Front Oncol, 2021, 10:570916.
doi: 10.3389/fonc.2020.570916 URL |
[26] |
CAO K Y, YAN T M, ZHANG J Z, et al. A tRNA-derived fragment from Chinese yew suppresses ovarian cancer growth via targeting TRPA1[J]. Mol Ther Nucleic Acids, 2022, 27:718-732.
doi: 10.1016/j.omtn.2021.12.037 URL |
[27] |
LI J, ZHU L, CHENG J, et al. Transfer RNA-derived small RNA: a rising star in oncology[J]. Semin Cancer Biol, 2021, 75:29-37.
doi: 10.1016/j.semcancer.2021.05.024 pmid: 34029740 |
[28] |
GOODARZI H, LIU X, NGUYEN H C, et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement[J]. Cell, 2015, 161(4):790-802.
doi: 10.1016/j.cell.2015.02.053 pmid: 25957686 |
[29] |
KRISHNA S, YIM D G, LAKSHMANAN V, et al. Dynamic expression of tRNA-derived small RNAs define cellular states[J]. EMBO Rep, 2019, 20(7):e47789.
doi: 10.15252/embr.201947789 URL |
[30] |
ZHAO R, YANG Z, ZHAO B, et al. A novel tyrosine tRNA-derived fragment, tRFTyr, induces oncogenesis and lactate accumulation in LSCC by interacting with LDHA[J]. Cell Mol Biol Lett, 2023, 28(1):49.
doi: 10.1186/s11658-023-00463-8 |
[31] |
YANG W, GAO K, QIAN Y, et al. A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes[J]. J Hematol Oncol, 2022, 15(1):53.
doi: 10.1186/s13045-022-01270-y |
[32] |
SHI J, ZHANG Y, ZHOU T, et al. tsRNAs: The swiss army knife for translational regulation[J]. Trends Biochem Sci, 2019, 44(3):185-189.
doi: S0968-0004(18)30190-7 pmid: 30297206 |
[33] |
GEBETSBERGER J, WYSS L, MLECZKO A M, et al. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress[J]. RNA Biol, 2017, 14(10):1364-1373.
doi: 10.1080/15476286.2016.1257470 pmid: 27892771 |
[34] |
KUMAR P, ANAYA J, MUDUNURI S B, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets[J]. BMC Biol, 2014, 12:78.
doi: 10.1186/s12915-014-0078-0 pmid: 25270025 |
[35] |
MAUTE R L, SCHNEIDER C, SUMAZIN P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma[J]. Proc Natl Acad Sci U S A, 2013, 110(4):1404-1409.
doi: 10.1073/pnas.1206761110 URL |
[36] |
KIM H K, FUCHS G, WANG S, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552(7683):57-62.
doi: 10.1038/nature25005 URL |
[37] |
KIM H K, XU J, CHU K, et al. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[J]. Cell Rep, 2019, 29(12):3816-3824.e4.
doi: S2211-1247(19)31553-0 pmid: 31851915 |
[38] |
LYONS S M, GUDANIS D, COYNE S M, et al. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs[J]. Nat Commun, 2017, 8(1):1127.
doi: 10.1038/s41467-017-01278-w pmid: 29066746 |
[39] |
AKIYAMA Y, KHAREL P, ABE T, et al. Isolation and initial structure-functional characterization of endogenous tRNA-derived stress-induced RNAs[J]. RNA Biol, 2020, 17(8):1116-1124.
doi: 10.1080/15476286.2020.1732702 pmid: 32116132 |
[40] |
YAN Q, ZHU C, GUANG S, et al. The functions of non-coding RNAs in rRNA regulation[J]. Front Genet, 2019, 10:290.
doi: 10.3389/fgene.2019.00290 pmid: 31024617 |
[41] | 中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2023版)[J]. 中华消化外科杂志, 2023, 22(6):667-698. |
National Health Commission of the People′s Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2023 edition)[J]. Chin J Dig Surg, 2023, 22(6):667-698. | |
[42] | 中华人民共和国国家卫生健康委员会医政医管局. 胃癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(9):1137-1164. |
Bureau of Medical Administration, National Health Commission of the People′s Republic of China. Standardization for diagnosis and treatment of gastric cancer (2022 edition)[J]. Chin J Dig Surg, 2022, 21(9):1137-1164. | |
[43] | 赫捷, 陈万青, 李兆申, 等. 中国胃癌筛查与早诊早治指南(2022,北京)[J]. 中华消化外科杂志, 2022, 21(7):827-851. |
HE J, CHEN WQ, LI ZS, et al. China guideline for the screening, early detection and early treatment of gastric cancer (2022, Beijing)[J]. Chin J Dig Surg, 2022, 21(7):827-851. | |
[44] |
TAO E W, WANG H L, CHENG W Y, et al. A specific tRNA half, 5'tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2[J]. J Exp Clin Cancer Res, 2021, 40(1):67.
doi: 10.1186/s13046-021-01836-7 |
[45] |
LUAN N, MU Y, MU J, et al. Dicer1 promotes colon cancer cell invasion and migration through modulation of tRF-20-MEJB5Y13 expression under hypoxia[J]. Front Genet, 2021, 12:638244.
doi: 10.3389/fgene.2021.638244 URL |
[46] |
LU S, WEI X, TAO L, et al. A novel tRNA-derived fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via binding to cytokines in colorectal cancer[J]. J Hematol Oncol, 2022, 15(1):176.
doi: 10.1186/s13045-022-01388-z |
[47] |
SHEN Y, XIE Y, YU X, et al. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells[J]. J Cancer, 2021, 12(11):3230-3238.
doi: 10.7150/jca.51567 pmid: 33976732 |
[48] |
DONG X, FAN X, HE X, et al. Comprehensively identifying the key trna-derived fragments and investigating their function in gastric cancer processes[J]. Onco Targets Ther, 2020, 13:10931-10943.
doi: 10.2147/OTT.S266130 URL |
[49] |
ZHU L, LI Z, YU X, et al. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2021, 12(1):418.
doi: 10.1186/s13287-021-02497-1 pmid: 34294122 |
[50] |
CUI H, LI H, WU H, et al. A novel 3'tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer[J]. Cell Death Dis, 2022, 13(5):471.
doi: 10.1038/s41419-022-04930-6 pmid: 35585048 |
[51] |
MO D, JIANG P, YANG Y, et al. A tRNA fragment, 5'-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer[J]. Cancer Lett, 2019, 457:60-73.
doi: 10.1016/j.canlet.2019.05.007 URL |
[52] |
SHAN N, LI N, DAI Q, et al. Interplay of tRNA-derived fragments and T cell activation in breast cancer patient survival[J]. Cancers (Basel), 2020, 12(8):2230.
doi: 10.3390/cancers12082230 URL |
[53] |
LI J, ZHU L, CHENG J, et al. Transfer RNA-derived small RNA: A rising star in oncology[J]. Semin Cancer Biol, 2021, 75:29-37.
doi: 10.1016/j.semcancer.2021.05.024 pmid: 34029740 |
[54] |
WU Y, YANG X, JIANG G, et al. 5'-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis[J]. Genome Med, 2021, 13(1):20.
doi: 10.1186/s13073-021-00833-x pmid: 33563322 |
[55] |
ZHU L, LI T, SHEN Y, et al. Using tRNA halves as novel biomarkers for the diagnosis of gastric cancer[J]. Cancer Biomark, 2019, 25(2):169-176.
doi: 10.3233/CBM-182184 pmid: 31104009 |
[56] |
SHEN Y, YU X, RUAN Y, et al. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor[J]. Int J Med Sci, 2021, 18(7):1570-1579.
doi: 10.7150/ijms.53220 pmid: 33746573 |
[57] |
WANG J, MA G, GE H, et al. Circulating tRNA-derived small RNAs (tsRNAs) signature for the diagnosis and prognosis of breast cancer[J]. NPJ Breast Cancer, 2021, 7(1):4.
doi: 10.1038/s41523-020-00211-7 pmid: 33402674 |
[58] |
ZHANG Y, GU X, QIN X, et al. Evaluation of serum tRF-23-Q99P9P9NDD as a potential biomarker for the clinical diagnosis of gastric cancer[J]. Mol Med, 2022, 28(1):63.
doi: 10.1186/s10020-022-00491-8 pmid: 35690737 |
[59] |
LI Y, ZHANG Y, LI X, et al. Serum tRF-27-FDXXE6XRK45 as a promising biomarker for the clinical diagnosis in gastric cancer[J]. Int J Med Sci, 2023, 20(9):1189-1201.
doi: 10.7150/ijms.85180 pmid: 37575270 |
[60] |
LI X, ZHANG Y, LI Y, et al. A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer[J]. Mol Carcinog, 2023, 62(10):1504-1517.
doi: 10.1002/mc.v62.10 URL |
[61] |
FENG W, LI Y, CHU J, et al. Identification of tRNA-derived small noncoding RNAs as potential biomarkers for prediction of recurrence in triple-negative breast cancer[J]. Cancer Med, 2018, 7(10):5130-5144.
doi: 10.1002/cam4.2018.7.issue-10 URL |
[62] |
HUANG Y, GE H, ZHENG M, et al. Serum tRNA-derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer[J]. J Cell Physiol, 2020, 235(3):2809-2824.
doi: 10.1002/jcp.29185 pmid: 31535382 |
[63] |
MO D, HE F, ZHENG J, et al. tRNA-derived fragment tRF-17-79MP9PP Attenuates Cell Invasion and migration via THBS1/TGF-β1/Smad3 axis in breast cancer[J]. Front Oncol, 2021, 11:656078.
doi: 10.3389/fonc.2021.656078 URL |
[64] |
ZHAN S, YANG P, ZHOU S, et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med. 2022; 16(2):216-226.
doi: 10.1007/s11684-022-0920-7 |
[65] | LIN C, ZHENG L, HUANG R, et al. tRFs as potential exosome tRNA-derived fragment biomarkers for gastric carcinoma[J]. Clin Lab, 2020, 66(6):10.7754/Clin.Lab.2019.190811. |
[66] |
ZHU L, LI J, GONG Y, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis[J]. Mol Cancer, 2019, 18(1):74.
doi: 10.1186/s12943-019-1000-8 pmid: 30940133 |
[67] |
LI K, LIN Y, LUO Y, et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study[J]. Mol Cancer, 2022, 21(1):21.
doi: 10.1186/s12943-022-01499-8 pmid: 35042519 |
[1] | 戴靖宜, 蒋敬庭. 肝细胞肝癌肿瘤标志物诊断的新进展[J]. 诊断学理论与实践, 2023, 22(05): 486-493. |
[2] | 李一林, 陈杨, 李艳艳, 冯旭娇, 章程, 李健, 沈琳. 循环肿瘤细胞检测在常见恶性肿瘤精准医学中的应用和展望[J]. 诊断学理论与实践, 2023, 22(04): 332-340. |
[3] | 施仲伟. 从学术角度看高血压诊断界值不应下调至130/80 mmHg[J]. 诊断学理论与实践, 2023, 22(04): 348-361. |
[4] | 刘英婷, 易红梅, 王雪, 杨春雪, 欧阳斌燊, 许海敏, 王朝夫. 十二指肠型滤泡性淋巴瘤17例临床病理特征及预后分析[J]. 诊断学理论与实践, 2023, 22(04): 362-368. |
[5] | 张兰兰, 杨巧, 聂尊珍, 郭英. 胸膜SMARCA4缺失未分化肿瘤1例报告[J]. 诊断学理论与实践, 2023, 22(04): 389-392. |
[6] | 胡静静, 沈银忠, 刘莉, 卢洪洲. 艾滋病合并播散性非结核分枝杆菌病诊治现状及研究进展[J]. 诊断学理论与实践, 2023, 22(04): 402-406. |
[7] | 刘益飞. DNA甲基化检测助力肿瘤早期筛查和诊断[J]. 诊断学理论与实践, 2023, 22(04): 393-401. |
[8] | 吴娜明, 李军, 陶娟. 恶性黑色素瘤的诊断热点[J]. 诊断学理论与实践, 2023, 22(03): 215-220. |
[9] | 徐莉, 高华杰, 杨梦歌, 李悦, 季苏琼. 合并抗TRIM21/Ro52抗体阳性的抗SRP阳性坏死性肌病患者临床特点分析[J]. 诊断学理论与实践, 2023, 22(03): 247-254. |
[10] | 杨巧, 付欣, 王哲, 刘坦坦. 甲状腺继发性肿瘤细胞病理学特征[J]. 诊断学理论与实践, 2023, 22(03): 270-276. |
[11] | 魏坚, 孙杰, 崔诗爽. 帕金森病早期诊断诺谟图模型的建立及验证[J]. 诊断学理论与实践, 2023, 22(03): 277-282. |
[12] | 尹永芳, 唐永华, 梁妍, 陈志仁, 费晓春. Erdheim-Chester病6例临床及影像学特征分析[J]. 诊断学理论与实践, 2023, 22(03): 283-291. |
[13] | 周晓蝶, 陈巍魏, 余波, 王璇, 王建军, 石群立, 饶秋, 鲍炜. 尿路上皮癌的临床病理学特征[J]. 诊断学理论与实践, 2023, 22(03): 292-299. |
[14] | 李笑石, 秦越. 影像学技术在痛风诊断及疾病监测中的应用研究进展[J]. 诊断学理论与实践, 2023, 22(03): 311-318. |
[15] | 宋陆茜, 常春康. 2023年美国国立综合癌症网络(NCCN)《骨髓增生异常综合征临床实践指南》(第1版)解读[J]. 诊断学理论与实践, 2023, 22(02): 116-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||