诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (05): 484-493.doi: 10.16150/j.1671-2870.2024.05.004
于津, 汪杰, 王虎军, 王丛笑, 李瑛琦, 方伯言, 王颖鹏()
收稿日期:
2023-12-04
接受日期:
2024-06-07
出版日期:
2024-10-25
发布日期:
2025-02-25
通讯作者:
王颖鹏 E-mail: ypwang@ccmu.edu.cn基金资助:
YU Jin, WANG Jie, WANG Hujun, WANG Congxiao, LI Yingqi, FANG Boyan, WANG Yingpeng()
Received:
2023-12-04
Accepted:
2024-06-07
Published:
2024-10-25
Online:
2025-02-25
摘要:
目的:探索应用功能性近红外光谱(functional near-infrared spectroscopy, fNIRS)信号结合机器学习算法对早期PD患者进行诊断的可行性。方法:研究连续纳入自2021年12月至2023年8月期间在首都医科大学附属北京康复医院确诊的60例PD患者和60名健康对照者,使用22个通道(channel, CH)的ETG-4000型近红外脑功能成像仪采集受试者前额叶氧合血红蛋白和脱氧血红蛋白浓度变化值,使用一般线性模型计算每个通道激活程度β值。构建4种机器学习诊断模型,即支持向量机(support vector machine, SVM)、反向传播(back-propagation, BP)神经网络、随机森林和逻辑回归模型。采用准确率、灵敏度、特异度、受试者操作特征(receiver operating characteristic, ROC)曲线下面积对4种诊断学模型的效果进行评价。此外,使用SHAP(SHapley Additive exPlanations)技术来提高最优模型的可解释性,计算每个通道的SHAP值,将不同通道SHAP值进行加权平均汇总后,结合脑区分布,得到不同脑区对于模型分类任务的贡献比例。结果:4种诊断模型的准确率范围为81%~90%,灵敏度为69%~89%,特异度为93%~100%,ROC曲线下面积为0.90~0.98。其中,SVM模型表现最佳, ROC曲线下面积为0.96,准确率为90%,灵敏度为89%,特异度为93%。SHAP分析显示对于SVM模型贡献最大的4个通道为:CH08、CH05、CH01和CH13,其中右侧前额极皮层(frontopolar cortex,FPC)区域占比最大占总贡献36.5%。结论:基于fNIRS信号和SVM算法构建的模型在诊断早期PD患者中表现出诊断优势,其灵敏度(89%)和特异度(93%)均优于大多数现有方法。未来的研究应重点关注右侧前额极皮层区域和背外侧前额叶皮层区域的fNIRS信号特征,以进一步提高诊断模型的效能。
中图分类号:
于津, 汪杰, 王虎军, 王丛笑, 李瑛琦, 方伯言, 王颖鹏. 基于机器学习的功能性近红外光谱信号识别早期帕金森病患者的研究[J]. 诊断学理论与实践, 2024, 23(05): 484-493.
YU Jin, WANG Jie, WANG Hujun, WANG Congxiao, LI Yingqi, FANG Boyan, WANG Yingpeng. Study on the recognition of early-stage Parkinson’s disease patients using functional near-infrared spectroscopy signals based on machine learning[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(05): 484-493.
表1
各算法模型超参数
Algorithm | Hyperparameters |
---|---|
Support vector machine | - Kernel type: Linear kernel |
- Regularization parameter C: 0.1 | |
- Gamma (parameter for RBF kernel): 0.01 | |
BP neural network | - Number of hidden layers: 2 layers |
- Number of neurons in each hidden layer: 100, 50 | |
- Learning rate: 0.001 | |
- Activation function: ReLU | |
Random forest | - Number of trees: 100 |
- Maximum depth: 20 | |
- Minimum number of samples required at a leaf node: 5 | |
- Maximum number of features: sqrt | |
Logistic regression | - Regularization type: L2 |
- Regularization parameter C: 0.01 |
表2
受试者基本特征表
Item | PD Group (n=60) | Control Group (n=60) | P-value |
---|---|---|---|
Age (x±s, years) | 55.70±4.18 | 57.80±5.41 | 0.815 |
Gender (Male/Female, n) | 37/23 | 31/29 | 0.725 |
Height (x±s, cm) | 167.6±2.3 | 168.4±5.4 | 0.341 |
Weight (x±s, kg) | 66.1±9.5 | 64.1±8.3 | 0.251 |
Duration of Illness (x±s, years) | 0.4±0.3 | / | / |
Hoehn Yahr Stage | 1.5±0.5 | / | / |
[1] |
MCDONALD C, GORDON G, HAND A, et al. 200 Years of Parkinson's disease: what have we learnt from James Parkinson?[J]. Age Ageing, 2018, 47(2):209-214.
doi: 10.1093/ageing/afx196 pmid: 29315364 |
[2] | TITOVA N, MARTINEZ-MARTIN P, KATUNINA E, et al. Advanced Parkinson's or "complex phase" Parkinson's disease? Re-evaluation is needed[J]. J Neural Transm (Vienna), 2017, 124(12):1529-1537. |
[3] |
MARINO B L B, DE SOUZA L R, SOUSA K P A, et al. Parkinson's disease: a review from pathophysiology to treatment[J]. Mini Rev Med Chem, 2020, 20(9):754-767.
doi: 10.2174/1389557519666191104110908 pmid: 31686637 |
[4] |
BARKHUIZEN M, ANDERSON D G, GROBLER A F. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies[J]. Neurochem Int, 2016, 93:6-25.
doi: 10.1016/j.neuint.2015.12.004 pmid: 26743617 |
[5] | 刘浩宇, 朋文佳, 芈静, 等. 1990-2019年全球帕金森病疾病负担的APC分析[J]. 中华全科医学, 2024, 22(1):154-157. |
LIU H Y, PENG W J, MI J, et al. APC analysis of the global disease burden of Parkinson's disease from 1990 to 2019[J]. Chin J Gen Pract, 2024, 22(1):154-157. | |
[6] | CHHOR V, KARACHI C, BONNET A M, et al. Anaesthesia and Parkinson's disease[J]. Ann Fr Anesth Reanim, 2011, 30(7-8): 559-68. |
[7] | KHAN H, NASEER N, YAZIDI A, et al. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: A review[J]. Front Hum Neurosci, 2021, 14:613254. |
[8] | 李进, 艾芳, 刘媛, 等. 震颤分析在原发性震颤与帕金森病鉴别诊断中的准确性及价值[J]. 中国临床研究, 2021, 34(10):1354-1357. |
LI J, AI F, LIU Y, et al. Tremor analysis in differential diagnosis of essential tremor and Parkinson's disease[J]. Chin J Clin Res, 2021, 34(10):1354-1357. | |
[9] |
DOVONOU A, BOLDUC C, SOTO LINAN V, et al. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions[J]. Transl Neurodegener, 2023, 12(1):36.
doi: 10.1186/s40035-023-00368-8 pmid: 37468944 |
[10] | WILCOX T, BIONDI M. fNIRS in the developmental scie-nces[J]. Wiley Interdiscip Rev Cogn Sci, 2015, 6(3):263-283. |
[11] | COCKX H, OOSTENVELD R, TABOR M, et al. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction[J]. Neuroimage, 2023, 269:119880. |
[12] | WEIBLEY H, DI FILIPPO M, LIU X, et al. fNIRS monitoring of infant prefrontal cortex during crawling and an executive functioning task[J]. Front Behav Neurosci, 2021, 15:675366. |
[13] | GUNASEKARA N, GAETA G, LEVY A, et al. fNIRS neuroimaging in olfactory research: A systematic literature review[J]. Front Behav Neurosci, 2022, 16:1040719. |
[14] |
ZIMEO MORAIS G A, BALARDIN J B, SATO J R. fNIRS Optodes' Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest[J]. Sci Rep, 2018, 8(1):3341.
doi: 10.1038/s41598-018-21716-z pmid: 29463928 |
[15] |
VITORIO R, STUART S, ROCHESTER L, et al. fNIRS response during walking - Artefact or cortical activity? A systematic review[J]. Neurosci Biobehav Rev, 2017, 83:160-172.
doi: S0149-7634(17)30347-0 pmid: 29017917 |
[16] |
NASEER N, HONG K S. fNIRS-based brain-computer interfaces: a review[J]. Front Hum Neurosci, 2015, 9:3.
doi: 10.3389/fnhum.2015.00003 pmid: 25674060 |
[17] | LU J, WANG Y, SHU Z, et al. fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease[J]. J Neural Eng, 2022, 19(4):10.1088/1741-2552/ac861e. |
[18] | NIEUWHOF F, REELICK M F, MAIDAN I, et al. Measuring prefrontal cortical activity during dual task walki-ng in patients with Parkinson's disease: feasibility of using a new portable fNIRS device[J]. Pilot Feasibility Stud, 2016, 2:59. |
[19] | KAUSHIK C, MCRAE A D, DAVENPORT M, et al. New equivalences between interpolation and SVMs: Kernels and Structured Features[J]. ArXiv, 2023, abs/2305.02304. |
[20] | JANG R. Learning representations by forward-propagating errors[J]. ArXiv, 2023, abs/2308.09728. |
[21] | CHEN C, HUANG T S, HUANG J C, et al. Design of music style classification teaching system based on BP neural network[C]. International Conference on Information System, 2022. |
[22] | LIMAM H, ZOUHAIR A, OUESLATI W. A new hybrid multiclass approach based on KNN and SVM[J]. J Inf Knowl Manag, 2022(21): 2250061:1-2250061:16. |
[23] | DEDJA K, NAKANO F K, PLIAKOS K, et al. Explaining random forest prediction through diverse rulesets[J]. ArXiv, 2022, abs/2203.15511. |
[24] | ZAIDI A, LUHAYB ASM A L. Two statistical approaches to justify the use of the logistic function in binary logistic regression[J]. Math probl Eng, 2023, 5525675, 11pages. |
[25] | NAGASAWA T, SATO T, NAMBU I, et al. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy[J]. J Neural Eng, 2020, 17(1):016068. |
[26] | HAN Y, HUANG J, YIN Y, et al. From brain to worksite: the role of fNIRS in cognitive studies and worker safety[J]. Front Public Health, 2023, 11:1256895. |
[27] |
KUMAR V, SHIVAKUMAR V, CHHABRA H, et al. Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review[J]. Asian J Psychiatr, 2017, 27:18-31.
doi: S1876-2018(16)30434-8 pmid: 28558892 |
[28] | BEHBOODI B, LIM S-H, LUNA M, et al. Artificial and convolutional neural networks for assessing functional connectivity in resting-state functional near infrared spectroscopy[J]. J Near Infrared Spectrosc, 2019, 27(3):191-205. |
[29] |
FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 2012, 63(2):921-935.
doi: 10.1016/j.neuroimage.2012.03.049 pmid: 22510258 |
[30] | WANG K, TIAN J, ZHENG C, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP[J]. Comput Biol Med, 2021, 137:104813. |
[31] | ARREDONDO M M. Shining a light on cultural neuros-cience: Recommendations on the use of fNIRS to study how sociocultural contexts shape the brain[J]. Cultur Dive-rs Ethnic Minor Psychol, 2023, 29(1):106-117. |
[32] | LI Y, ZHANG X, MING D. Early-stage fusion of EEG and fNIRS improves classification of motor imagery[J]. Front Neurosci, 2023, 16:1062889. |
[33] | BLASI A, LLOYD-FOX S, KATUS L, et al. fNIRS for tracking brain development in the context of global health projects[J]. Photonics, 2019, 6(3):89. |
[34] |
ALEXANDER R E, GAGE T W. Parkinson's disease: an update for dentists[J]. Gen Dent, 2000, 48(5):572-582.
pmid: 11199638 |
[35] | 杜静, 吴铁妤, 严孙宏, 等. 脑白质病变与帕金森病患者临床症状的相关性研究[J]. 重庆医科大学学报, 2024, 49(5):558-562. |
DU J, WU T Y, YAN S H, et al. Association between white matter lesion and clinical symptoms in patients with Parkinson's disease[J]. J Chongqing Med Univ, 2024, 49(5):558-562. | |
[36] | VIRAMETEEKUL S, REVESZ T, JAUNMUKTANE Z, et al. Clinical diagnostic accuracy of Parkinson's disease: where do we stand?[J]. Mov Disord, 2023, 38(4):558-566. |
[37] |
FILIPPI M, ELISABETTA S, PIRAMIDE N, et al. Functional MRI in idiopathic Parkinson's disease[J]. Int Rev Neurobiol, 2018, 141:439-467.
doi: S0074-7742(18)30072-2 pmid: 30314606 |
[38] |
CORDES D, ZHUANG X, KALEEM M, et al. Advances in functional magnetic resonance imaging data analysis methods using Empirical Mode Decomposition to investigate temporal changes in early Parkinson's disease[J]. Alzheimers Dement (N Y), 2018, 4:372-386.
doi: 10.1016/j.trci.2018.04.009 pmid: 30175232 |
[39] |
SYED NASSER N, IBRAHIM B, SHARIFAT H, et al. Incremental benefits of EEG informed fMRI in the study of disorders related to meso-corticolimbic dopamine pathway dysfunction: A systematic review of recent literature[J]. J Clin Neurosci, 2019, 65:87-99.
doi: S0967-5868(19)30367-4 pmid: 30955950 |
[40] | LU J, WANG Y, SHU Z, et al. fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease[J]. J Neural Eng, 2022, 19(4):10.1088/1741-2552/ac861e. |
[41] | ABTAHI M, BAHRAM BORGHEAI S, JAFARI R, et al. Merging fNIRS-EEG brain monitoring and body motion capture to distinguish parkinson’s disease[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(6):1246-1253. |
[42] |
HOLPER L, TEN BRINCKE R H, WOLF M, et al. fNIRS derived hemodynamic signals and electrodermal responses in a sequential risk-taking task[J]. Brain Res, 2014, 1557:141-154.
doi: 10.1016/j.brainres.2014.02.013 pmid: 24530267 |
[43] | CHEN Z, LI G, LIU J. Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment[J]. Neurobiol Dis, 2020, 134:104700. |
[44] | GHOUSE A, NARDELLI M, VALENZA G. fNIRS Complexity analysis for the assessment of motor imagery and Mental Arithmetic Tasks[J]. Entropy (Basel), 2020, 22(7):761. |
[45] | LIU W Y, TUNG T H, ZHANG C, et al. Systematic review for the prevention and management of falls and fear of falling in patients with Parkinson’s disease[J]. Brain Behav, 2022, 12(8):e2690. |
[46] | 张玉玲, 陈安安, 张海涵, 等. 中西医结合治疗帕金森病伴发睡眠障碍的临床研究进展[J]. 神经病学与神经康复学杂志, 2023, 19(4):127-134. |
ZHANG Y L, CHEN A A, ZHANG H H, et al. Progress of clinical research on the treatment of Parkinson’s di-sease accompanied by sleep disorder with integrative medicine[J]. J Neurol Neurorehabil, 2023, 19(4):127-134. | |
[47] | 李杨夏, 张克忠. 帕金森病睡眠障碍研究进展[J]. 神经病学与神经康复学杂志, 2022, 18(1):22-28. |
LI Y X, ZHANG K Z. Advances in Parkinson's disease sleep disorder[J]. J Neurol Neurorehabil, 2022, 18(1):22-28. |
[1] | 魏坚, 孙杰, 崔诗爽. 帕金森病早期诊断诺谟图模型的建立及验证[J]. 诊断学理论与实践, 2023, 22(03): 277-282. |
[2] | 武冬冬, 李淑华, 苏闻, 刘银红, 陈海波, 陈頔. 抗帕金森病药物诱发5-羟色胺综合征1例[J]. 诊断学理论与实践, 2023, 22(03): 303-305. |
[3] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[4] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[5] | 陈施吾, 窦荣花, 王玉凯, 王含, 王晓平, 陈先文, 陈玲, 王训, 屈洪党, 陈生弟, Susan Fox, 李燕, 王刚. 帕金森病血压管理专家共识[J]. 诊断学理论与实践, 2020, 19(05): 460-468. |
[6] | 邵丹丹, 付洋, 罗琪, 陈捷, 马建芳, 黄雷. 血清尿酸水平与帕金森病发病间关系的前瞻性研究[J]. 诊断学理论与实践, 2020, 19(02): 139-144. |
[7] | 武冬冬, 刘银红, 蒋景文, 陈海波. 放射性核素在帕金森病诊断中的应用[J]. 诊断学理论与实践, 2018, 17(06): 726-730. |
[8] | 严振鹏, 杨月嫦, 吴惠涓, 陈坤, 徐云霞. 1例多方案评估帕金森病睡眠障碍治疗疗效的病例报告[J]. 诊断学理论与实践, 2018, 17(04): 457-459. |
[9] | 刘春风, 徐兴, 沈赟. 多导睡眠监测在帕金森病伴发睡眠障碍诊断中的应用[J]. 诊断学理论与实践, 2018, 17(04): 377-381. |
[10] | 曹学兵, 曾玮琪, 徐岩. 帕金森病冻结步态诊疗研究进展[J]. 诊断学理论与实践, 2018, 17(04): 382-386. |
[11] | 崔海伦, 张一帆, 管晓军, 黄沛钰, 刘志蓉, 袁园, 刘晓云, 朱红灿, 曹学兵, 陈玲, 陈先文, 陈燕, 商慧芳, 杨任民, 陈生弟, 张敏鸣, 王刚. 帕金森病及相关运动障碍的神经影像学诊断专家共识[J]. 诊断学理论与实践, 2018, 17(04): 403-408. |
[12] | 崔诗爽, 陈生弟, 王刚. 帕金森病体液生物标志物研究进展[J]. 诊断学理论与实践, 2018, 17(04): 471-476. |
[13] | 邹扬, 崔海伦, 胡勇博, 高颖, 张月琪, 陈生弟, 王刚. 运动诱发电位用于鉴别诊断原发性帕金森病和多系统萎缩的临床研究[J]. 诊断学理论与实践, 2018, 17(04): 409-413. |
[14] | 贺娜英, 许洪敏, 黄沛, 陈生弟, 严福华, 凌华威. 基于定量磁化率图像观察帕金森病患者黑质体-1退变的研究[J]. 诊断学理论与实践, 2017, 16(02): 147-151. |
[15] | 邹扬, 胡勇博, 高颖, 张月琪, 陈生弟, 王刚,. 长病程帕金森病患者的运动诱发电位研究[J]. 诊断学理论与实践, 2016, 15(02): 124-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||