诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (04): 384-390.doi: 10.16150/j.1671-2870.2021.04.010
收稿日期:
2021-08-13
出版日期:
2021-08-25
发布日期:
2022-06-28
通讯作者:
徐浩
E-mail:mrxuhao2000@163.com
基金资助:
XU Haoa(), ZHANG Zhia, XIE Xueqianb, YANG Wenyia, LIU Shaowena
Received:
2021-08-13
Online:
2021-08-25
Published:
2022-06-28
Contact:
XU Hao
E-mail:mrxuhao2000@163.com
摘要:
目的:基于冠状动脉(冠脉)计算机体层摄影血管造影(computed tomography angiography,CTA)检查结果,采用国产人工智能冠脉生理功能评估软件(DEEPVESSEL-FFR,DV-FFR)诊断冠脉功能性缺血,并评估其应用价值。 方法:本研究为前瞻性、单中心、自身对照研究,共纳入18例患者(共21根血管, 狭窄程度为30%~90%),同时采用有创冠脉血流储备分数(fractional flow reserve,FFR)检测和DV-FFR检查评估冠脉功能性缺血情况, 以有创FFR作为金标准,评价DV-FFR的诊断效能。DV-FFR使用64排及64排以上CT设备采集冠脉CTA 的DICOM格式数据,基于计算机深度学习技术进行血管分割和重建,提取血管中心线,进而计算冠脉FFR。DV-FFR采用三维几何自动量化方法计算FFR数值,评估 3个主支血管[左前降支(left anterior descending,LAD)、左回旋支(left circumflex,LCX)、右冠状动脉(right coronary artery,RCA)]的狭窄缺血风险。 结果:参考有创FFR结果,取FFR=0.8为切点值,DV-FFR≤0.8即为有意义的功能性心肌缺血。在血管层面,DV-FFR软件诊断缺血的准确率、特异度、灵敏度、阳性预测值、阴性预测值分别为90.5%、88.9%、91.7%、91.7%和88.9%;在患者层面,DV-FFR软件的诊断准确率、特异度、灵敏度、阳性预测值、阴性预测值分别为88.9%、87.5%、90.0%、90.0%和87.5%。DV-FFR结果与有创FFR结果间一致性较好,诊断效能无差异(P=0.787)。 结论:CTA检查结果显示冠脉狭窄程度为30%~90%时,采用DV-FFR诊断冠脉功能性缺血的结果与有创FFR检测结果间一致性较好,可作为评估冠脉功能性缺血的一种有效方法。
中图分类号:
徐浩, 张治, 解学乾, 杨文艺, 刘少稳. 冠脉生理功能评估软件(DEEPVESSEL FFR)与有创FFR在评估冠脉缺血中的对比研究[J]. 诊断学理论与实践, 2021, 20(04): 384-390.
XU Hao, ZHANG Zhi, XIE Xueqian, YANG Wenyi, LIU Shaowen. Comparative study on software DEEPVESSEL FFR and invasive FFR in assessing coronary ischemia[J]. Journal of Diagnostics Concepts & Practice, 2021, 20(04): 384-390.
表1
血管层面有创FFR与DV-FFR比较
血管序号 | 有创FFR | DV-FFR |
---|---|---|
1 | 0.76 | 0.74 |
2 | 0.90 | 0.82 |
3 | 0.67 | 0.68 |
4 | 0.74 | 0.75 |
5 | 0.86 | 0.81 |
6 | 0.80 | 0.81 |
7 | 0.67 | 0.72 |
8 | 0.85 | 0.75 |
9 | 0.64 | 0.69 |
10 | 0.98 | 0.84 |
11 | 0.89 | 0.82 |
12 | 0.78 | 0.75 |
13 | 0.79 | 0.78 |
14 | 0.76 | 0.71 |
15 | 0.85 | 0.86 |
16 | 0.88 | 0.85 |
17 | 0.65 | 0.78 |
18 | 0.80 | 0.81 |
19 | 0.81 | 0.82 |
20 | 0.79 | 0.78 |
21 | 0.85 | 0.90 |
表2
患者层面的有创FFR与DV-FFR比较
患者序号 | 有创FFR | DV-FFR |
---|---|---|
1 | 0.86 | 0.74 |
2 | 0.90 | 0.82 |
3 | 0.67 | 0.68 |
4 | 0.74 | 0.75 |
5 | 0.86 | 0.81 |
6 | 0.80 | 0.81 |
0.67(LCX) | 0.72(LCX) | |
7 | 0.85 | 0.75 |
8 | 0.64 | 0.69 |
9 | 0.98 | 0.84 |
10 | 0.89 | 0.82 |
11 | 0.78 | 0.75 |
12 | 0.79 | 0.78 |
0.76(RCA) | 0.71(RCA) | |
13 | 0.85 | 0.86 |
14 | 0.88 | 0.85 |
15 | 0.65 | 0.78 |
16 | 0.80 | 0.80 |
17 | 0.81 | 0.82 |
18 | 0.79 | 0.78 |
0.85(LCX) | 0.90(LCX) |
[1] |
Pijls NH, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study[J]. J Am Coll Cardiol, 2007,49(21):2105-2111.
doi: 10.1016/j.jacc.2007.01.087 pmid: 17531660 |
[2] |
Tonino PA, de Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009,360(3):213-224.
doi: 10.1056/NEJMoa0807611 URL |
[3] |
de Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease[J]. N Engl J Med, 2012,367(11):991-1001.
doi: 10.1056/NEJMoa1205361 URL |
[4] |
Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW(Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study[J]. J Am Coll Cardiol, 2011,58(19):1989-1997.
doi: 10.1016/j.jacc.2011.06.066 URL |
[5] |
Nakazato R, Park HB, Berman DS, et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity results from the DeFACTO study[J]. Circ Cardiovasc Imaging, 2013,6(6):881-889.
doi: 10.1161/CIRCIMAGING.113.000297 pmid: 24081777 |
[6] |
Gaur S, Achenbach S, Leipsic J, et al. Rationale and design of the Heart Flow NXT (HeartFlow analysis of coronary blood flow using CT angiography: NeXt sTeps) study[J]. J Cardiovasc Comput Tomogr, 2013,7(5):279-288.
doi: 10.1016/j.jcct.2013.09.003 URL |
[7] |
Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study[J]. J Am Coll Cardiol, 2010,56(3):177-184.
doi: 10.1016/j.jacc.2010.04.012 pmid: 20537493 |
[8] |
Meijboom WB, Van Mieghem CA, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina[J]. J Am Coll Cardiol, 2008,52(8): 636-643.
doi: 10.1016/j.jacc.2008.05.024 pmid: 18702967 |
[9] |
Park SJ, Kang SJ, Ahn JM, et al. Visual-functional mismatch between coronary angiography and fractional flow reserve[J]. JACC Cardiovasc Interv, 2012,5(10):1029-1036.
doi: 10.1016/j.jcin.2012.07.007 URL |
[10] |
Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory[J]. J Am Coll Cardiol, 2010,55(3):173-185.
doi: 10.1016/j.jacc.2009.06.062 URL |
[11] |
Taylor CA, Fonte TA, Min JK, et al. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve:scientific basis[J]. J Am Coil Cardiol, 2013,61:2233-2241.
doi: 10.1016/j.jacc.2012.11.083 URL |
[12] |
Douglas PS, De Bruyne B, Pontone G, et al. 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study[J]. J Am Coll Cardiol, 2016,68(5):435-445.
doi: S0735-1097(16)33395-2 pmid: 27470449 |
[13] |
Chinnaiyan KM, Akasaka T, Amano T, et al. Rationale,design and goals of the HeartFlow assessing diagnostic value of non-invasive FFRCT in Coronary Care (ADVANCE) registry[J]. J Cardiovasc Comput Tomogr, 2017,11(1):62-67.
doi: S1934-5925(16)30288-X pmid: 28017291 |
[14] |
Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE registry[J]. Eur Heart J, 2018,39(41):3701-3711.
doi: 10.1093/eurheartj/ehy530 pmid: 30165613 |
[15] |
Pontone G, Weir-McCall JR, Baggiano A, et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis[J]. Radiology, 2019,292(3):597-605.
doi: 10.1148/radiol.2019182673 URL |
[16] |
Cavalcante R, Onuma Y, Sotomi Y, et al. Non-invasive Heart Team assessment of multivessel coronary disease with coronary computed tomography angiography based on SYNTAX score Ⅱ treatment recommendations: design and rationale of the randomised SYNTAX Ⅲ Revolution trial[J]. EuroIntervention, 2017,12(16):2001-2008.
doi: EIJ-D-16-00612 pmid: 27973335 |
[17] | Sonck J, Miyazaki Y, Collet C, et al. Feasibility of planning coronary artery bypass grafting based only on coronary computed tomography angiography and CT-derived fractional flow reserve: a pilot survey of the surgeons involved in the randomized SYNTAX Ⅲ Revolution trial[J/OL]. Interact Cardiovasc Thorac Surg, 2019-05-18[2021-08-13]. https://pubmed.ncbi.nlm.nih.gov/30887024/. |
[18] |
Andreini D, Modolo R, Katagiri Y, et al. Impact of fractional flow reserve derived from coronary computed tomography angiography on heart team treatment decision-making in patients with multivessel coronary artery di-sease: insights from the SYNTAX Ⅲ REVOLUTION trial[J]. Circ Cardiovasc Interv, 2019,12(12):e007607.
doi: 10.1161/CIRCINTERVENTIONS.118.007607 URL |
[1] | 范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21(03): 374-379. |
[2] | 黄琼, 吴梦雄, 董海鹏, 严福华, 张雪坤. 基于骨重建算法结合ASIR-V在冠状动脉支架成像中的应用研究[J]. 诊断学理论与实践, 2022, 21(01): 68-73. |
[3] | 杨文洁, 严福华. 2020年版《冠状动脉CT血流储备分数应用中国专家建议》解读[J]. 诊断学理论与实践, 2021, 20(03): 239-244. |
[4] | 吴洁, 冯媛媛, 任妍, 曹久妹. 基于冠状动脉造影检查的高龄老年人群发生冠心病的危险因素调查及相应诊断模型的建立[J]. 诊断学理论与实践, 2021, 20(02): 201-206. |
[5] | 孙芙蓉, 陈克敏, 潘自来, 徐敬慈, 饶敏. 枕动脉的多层螺旋CT血管造影及不同重建方法间的比较[J]. 诊断学理论与实践, 2020, 19(1): 80-83. |
[6] | 陈馨, 刘莉莉, 倪靖炜, 徐刚, 权薇薇, 张智若. 经皮冠状动脉介入术术后患者的生活质量调查及相关影响因素[J]. 诊断学理论与实践, 2020, 19(03): 308-313. |
[7] | . 三维平衡稳态自由进动磁共振成像序列在儿童冠状动脉异常起源于肺动脉诊断中的应用价值[J]. 诊断学理论与实践, 2020, 19(02): 145-150. |
[8] | 李琳, 牛静雅, 王天歌, 李勉, 赵志云, 徐瑜, 陆洁莉, 徐敏, 毕宇芳, 王卫庆, 高金丽. 上海市淞南社区中老年人群冠状动脉粥样硬化患病率CCTA调查结果及相关因素分析[J]. 诊断学理论与实践, 2018, 17(01): 38-44. |
[9] | 吴丽苹, 曹久妹. 长链非编码RNA在冠状动脉粥样硬化性心脏病中的研究进展[J]. 诊断学理论与实践, 2017, 16(06): 664-667. |
[10] | 李俊伟, 夏寒冰, 赵红丽, 刘淑霞. 基于超声测量的心外膜脂肪组织厚度预测冠心病的价值[J]. 诊断学理论与实践, 2017, 16(03): 324-327. |
[11] | 凌媛, 王书鸿, 梁伟, 沈琳辉. 血清补体C1q肿瘤坏死因子相关蛋白1水平与冠状动脉粥样硬化性心脏病相关性研究[J]. 诊断学理论与实践, 2017, 16(02): 199-203. |
[12] | 倪通天, 陈敏, 陆亚, 盛慧球, 周伟君, 毛恩强, 陈尔真,. 急性冠状动脉综合征患者抗血小板治疗中血栓弹力图的变化[J]. 诊断学理论与实践, 2016, 15(02): 142-147. |
[13] | 马骏, 王飞, 刘佳, 钱昕伟, 李媛媛, 陆晓晔, 朱长清, 冯楠,. 缺血修饰白蛋白在急性冠状动脉综合征筛查中的价值[J]. 诊断学理论与实践, 2015, 14(05): 451-454. |
[14] | 权薇薇, 徐志红, 陆国平, 李英梅, 袁鑅, 沈越, 戚文航,. 冠状动脉粥样硬化性心脏病患者冠状动脉旁路移植术后心肌缺血的心磁图评价[J]. 诊断学理论与实践, 2015, 14(03): 267-269. |
[15] | 权薇薇, 陆国平, 李英梅, 沈越, 袁鑅, 戚文航,. 冠状动脉粥样硬化性心脏病患者特征性的心磁图表现[J]. 诊断学理论与实践, 2014, 13(06): 593-596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||