诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (04): 407-413.doi: 10.16150/j.1671-2870.2021.04.015
收稿日期:
2021-05-20
出版日期:
2021-08-25
发布日期:
2022-06-28
通讯作者:
周艺,杨莉
E-mail:e_zhouyi@163.com;liyanggsh@163.com
Received:
2021-05-20
Online:
2021-08-25
Published:
2022-06-28
中图分类号:
周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413.
[1] |
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics[J]. CA Cancer J Clin, 2019,69(5):363-385.
doi: 10.3322/caac.21565 URL |
[2] |
Paver EC, Cooper WA, Colebatch AJ, et al. Programmed death ligand-1(PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation[J]. Pathology, 2021,53(2): 141-156.
doi: 10.1016/j.pathol.2020.10.007 URL |
[3] |
Xue Y, Gao S, Gou J, et al. Platinum-based chemotherapy in combination with PD-1/PD-L1 inhibitors: preclinical and clinical studies and mechanism of action[J]. Expert Opin Drug Deliv, 2021,18(2):187-203.
doi: 10.1080/17425247.2021.1825376 URL |
[4] | Waller EK. The Role of Sargramostim (rhGM-CSF) as Immunotherapy[J]. Oncologist, 2007,12: 22-26. |
[5] |
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013,39(1):1-10.
doi: 10.1016/j.immuni.2013.07.012 URL |
[6] |
Li J, Lee Y, Li Y, et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8+ T cells[J]. Immunity, 2018,48(4):773-786.
doi: 10.1016/j.immuni.2018.03.018 URL |
[7] | Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy:Mechanisms, response biomarkers, and combinations[J]. SciTransl Med, 2016,8(328):328. |
[8] | Dai W, Qiu X, Lu C, et al. AGIG chemo-immunotherapy in patients with advanced pancreatic cancer: a single-arm, single-center, phase Ⅱ study[J]. J Clin Oncol, 2021,39(3 suppl):384-384. |
[9] |
Caraglia M, Correale P, Giannicola R, et al. GOLFIG chemo-immunotherapy in metastatic colorectal cancer patients. A critical review on a long-lasting follow-up[J]. Front Oncol, 2019,9:1102.
doi: 10.3389/fonc.2019.01102 pmid: 31781481 |
[10] |
Correale P, Botta C, Rotundo MS, et al. Gemcitabine, oxaliplatin, levofolinate, 5-fluorouracil, granulocyte-macrophage colony-stimulating factor, and interleukin-2 (GOLFIG) versus FOLFOX chemotherapy in metastatic colorectal cancer patients: the GOLFIG-2 multicentric open-label randomized phase Ⅲ trial[J]. J Immunother, 2014,37(1):26-35.
doi: 10.1097/CJI.0000000000000004 URL |
[11] |
Correale P, Cusi MG, Tsang KY, et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol, 2005,23(35):8950-8958.
doi: 10.1200/JCO.2005.12.147 URL |
[12] |
Correale P, Tagliaferri P, Fioravanti A, et al. Immunity feedback and clinical outcome in colon cancer patients undergoing chemoimmunotherapy with gemcitabine+ FOLFOX followed by subcutaneous granulocyte macrophage colony-stimulating factor and aldesleukin (GOLFIG-1 Trial)[J]. Clin Cancer Res, 2008,14(13):4192-4199.
doi: 10.1158/1078-0432.CCR-07-5278 URL |
[13] |
Dan LU, Liu L, Sun Y, et al. The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity[J]. Nat Immunol, 2020,21(3):287-297.
doi: 10.1038/s41590-019-0577-9 pmid: 31932812 |
[14] |
Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018,175(2):313-326.
doi: S0092-8674(18)31247-9 pmid: 30290139 |
[15] | La J, Cheng D, Brophy MT, et al. Real-world outcomes for patients treated with immune checkpoint inhibitors in the veterans affairs system[J]. JCO Clin Cancer Inform, 2020,4:918-928. |
[16] |
Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase Ⅱ KEYNOTE-158 study[J]. J Clin Oncol, 2020,38(1):1-10.
doi: 10.1200/JCO.19.02105 pmid: 31682550 |
[17] |
Gurbatri CR, Lia I, Vincent R, et al. Engineered probio-tics forlocal tumor delivery of checkpoint blockade nanobodies[J]. Sci Transl Med, 2020,12(530): eaax0876.
doi: 10.1126/scitranslmed.aax0876 URL |
[18] |
Kong Y, Ma Y, Zhao X, et al. Optimizing the treatment schedule of radiotherapy combined with anti-PD-1/PD-L1 immunotherapy in metastatic cancers[J]. Front Oncol, 2021,11:638873.
doi: 10.3389/fonc.2021.638873 URL |
[19] |
Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in neutropenia[J]. J Immunol, 2015,195(4):1341-1349.
doi: 10.4049/jimmunol.1500861 URL |
[20] |
Hotchkiss RS, Opal SM, et al. Activating immunity to fight a foe -a new path[J]. N Engl J Med, 2020,382(13):1270-1272.
doi: 10.1056/NEJMcibr1917242 URL |
[21] |
van de Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy[J]. Blood, 2012,119(15):3383-3393.
doi: 10.1182/blood-2011-11-370130 URL |
[22] |
Sun L, Rautela J, Delconte RB, et al. GM-CSF quantity has a selective effect on granulocytic vs. monocytic myeloid development and function[J]. Front Immunol, 2018,9:1922.
doi: 10.3389/fimmu.2018.01922 pmid: 30210491 |
[23] |
Martinez M, Ono N, Planutiene M, et al. Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy[J]. Cancer Cell Int, 2012,12(1):2.
doi: 10.1186/1475-2867-12-2 pmid: 22270330 |
[24] |
Li X, Guo X, Ling J, et al. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages[J]. Nanoscale, 2021,13(9):4705-4727.
doi: 10.1039/D0NR08050K URL |
[25] |
Umakoshi M, Takahashi S, Itoh G, et al. Macrophage-mediated transfer of cancer-derived components to stromal cells contributes to establishment of a pro-tumor microenvironment[J]. Oncogene, 2019,38(12):2162-2176.
doi: 10.1038/s41388-018-0564-x URL |
[26] |
Trus E, Basta S, Gee K. Who′s in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization[J]. Cytokine, 2020,127:154939.
doi: 10.1016/j.cyto.2019.154939 URL |
[27] |
Cabanillas F, Cotto M, Liboy I, et al. Front-line immunochemotherapy for aggressive non-Hodgkin lymphoma using dose-dense rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone plus granulocyte-macrophage colony stimulating factor and pegfilgrastim as support[J]. Leuk Lymphoma, 2012,53(10):1929-1933.
doi: 10.3109/10428194.2012.679264 URL |
[28] |
Zhang Y, Xiang J, Sheng X, et al. GM-CSF enhanced the effect of CHOP and R-CHOP on inhibiting diffuse large B-cell lymphoma progression via influencing the macrophage polarization[J]. Cancer Cell Int, 2021,21(1):141.
doi: 10.1186/s12935-021-01838-7 pmid: 33653348 |
[29] |
Oosterling SJ, Mels AK, Geijtenbeek TB, et al. Preoperative granulocyte/macrophage colony-stimulating factor (GM-CSF) increases hepatic dendritic cell numbers and clustering with lymphocytes in colorectal cancer patients[J]. Immunobiology, 2006,211(6-8):641-649.
pmid: 16920503 |
[30] |
Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage Ⅲ and Ⅳ malignant melanoma using granulocyte-macrophage colony-stimulating factor[J]. J Clin Oncol, 2000,18(8):1614-1621.
doi: 10.1200/JCO.2000.18.8.1614 pmid: 10764421 |
[31] |
Mole RH. Whole body irradiation; radiobiology or medicine?[J]. Br J Radiol, 1953,26(305): 234-241.
doi: 10.1259/0007-1285-26-305-234 URL |
[32] |
Goto T. Radiation as an in situ auto-vaccination: current perspectives and challenges[J]. Vaccines, 2019,7(3):100.
doi: 10.3390/vaccines7030100 URL |
[33] |
Dudek AM, Garg AD, Krysko DV, et al. Inducers of immunogenic cancer cell death[J]. Cytokine Growth Factor Rev, 2013,24(4): 319-333.
doi: 10.1016/j.cytogfr.2013.01.005 URL |
[34] |
Kioi M, Vogel H, Schultz G, et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice[J]. J Clin Invest, 2010,120(3):694-705.
doi: 10.1172/JCI40283 URL |
[35] |
Menon H, Ramapriyan R, Cushman TR, et al. Role of radiation therapy in modulation of the tumor stroma and microenvironment[J]. Front Immunol, 2019,10:193.
doi: 10.3389/fimmu.2019.00193 pmid: 30828330 |
[36] |
Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial[J]. Lancet Oncol, 2015,16(7):795-803.
doi: 10.1016/S1470-2045(15)00054-6 URL |
[37] |
Wang Y, Zenkoh J, Gerelchuluun A, et al. Administration of dendritic cells and anti-PD-1 antibody converts X-ray irradiated tumors into effective in situ vaccines[J]. Int J Radiat Oncol Biol Phys, 2019,103(4):958-969.
doi: 10.1016/j.ijrobp.2018.11.019 URL |
[38] |
Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity[J]. Proc Natl Acad Sci U S A, 1993,90(8):3539-3543.
doi: 10.1073/pnas.90.8.3539 pmid: 8097319 |
[39] |
Deng G, Hu P, Zhang J, et al. Elevated serum granulocyte-macrophage colony-stimulating factor levels during radiotherapy predict favorable outcomes in lung and esophageal cancer[J]. Oncotarget, 2016,7(51):85142-85150.
doi: 10.18632/oncotarget.13202 URL |
[40] | Xu X, Fan M, Chen J, et al. Abscopal effect and safety of recurrent and refractory advanced malignant thymoma or thymic carcinoma treated with combined therapy of local radiotherapy and granulocyte-macrophage colony-stimulating factor[J]. Int J Radiat Oncol Biol Phys, 2019:105. |
[41] |
Liu M, Cai X, Zeng Y. The abscopal effects of the combination of radiotherapy and GM-CSF for patients with metastatic thoracic cancers[J]. J Thorac Oncol, 2019,14(10):S980.
doi: 10.1016/j.jtho.2019.08.2153 |
[42] |
Mayoux M, Roller A, Pulko V, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy[J]. Sci Transl Med, 2020,12(534):eaav7431.
doi: 10.1126/scitranslmed.aav7431 URL |
[43] |
Zhang X, Shi X, Li J, et al. PD-1 blockade overcomes adaptive immune resistance in treatment with anchored-GM-CSF bladder cancer cells vaccine[J]. J Cancer, 2018,9(23):4374-4381.
doi: 10.7150/jca.25423 URL |
[44] |
Yu S, Sha H, Qin X, et al. EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells[J]. Oncogene, 2020,39(13):2643-2657.
doi: 10.1038/s41388-020-1182-y URL |
[45] |
Miyake M, Hori S, Ohnishi S, et al. Supplementary granulocyte macrophage colony-stimulating factor to chemotherapy and programmed death-ligand 1 blockade decreases local recurrence after surgery in bladder cancer[J]. Cancer Sci, 2019,110(10):3315-3327.
doi: 10.1111/cas.14158 URL |
[46] |
Hodi FS, Lee S, McDermott DF, et al. Ipilimumab plus sargramostimvsipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial[J]. JAMA, 2014,312(17):1744-1753.
doi: 10.1001/jama.2014.13943 URL |
[47] |
Kelley R K, Mitchell E, Behr S, et al. Phase 2 trial of pembrolizumab (PEM) plus granulocyte macrophage colony stimulating factor (GM-CSF) in advanced biliary cancers (ABC): Clinical outcomes and biomarker analyses[J]. J Clin Oncol, 2018,36(15_suppl):4087-4087.
doi: 10.1200/JCO.2018.36.15_suppl.4087 URL |
[48] | Kong Y, Zhao X, Zou L, et al. PD-1 inhibitor combined with radiotherapy and GM-CSF as salvage therapy in patients with chemotherapy-refractory metastatic solid tumors[J]. J Clin Oncol, 2020,38(15 suppl):e15173-e15173. |
[49] | Snehal SP, David BM, Marisa SP, et al. Five year median follow-up data from a prospective, randomized, placebo-controlled, single-blinded, multicenter, phase Ⅱb study evaluating the reduction of recurrences using HER2/neu peptide GP2+ GM-CSF vs. GM-CSF alone after adjuvant trastuzumab in HER2 positive women with operable breast cancer[J]. San Antonio Breast Cancer Symposium, 2020,12:PS10-PS23. |
[50] |
Schijns VE, Pretto C, Devillers L, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastomamultiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity[J]. Vaccine, 2015,33(23):2690-2696.
doi: 10.1016/j.vaccine.2015.03.095 pmid: 25865468 |
[51] |
Palmer DH, Valle JW, Ma YT, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas(CT TG01-01): a single-arm, phase 1/2 trial[J]. Br J Cancer, 2020,122(7):971-977.
doi: 10.1038/s41416-020-0752-7 URL |
[1] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[2] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[3] | 顾卫琼. 免疫检查点抑制剂致甲状腺损伤的诊治进展[J]. 诊断学理论与实践, 2021, 20(04): 338-342. |
[4] | 王晓斐, 张秋蕊. 免疫检查点抑制剂致肺部不良反应的诊治进展[J]. 诊断学理论与实践, 2021, 20(04): 343-348. |
[5] | 安晓宁, 魏兆楠, 沈艳, 史浩, 张文, 陈永熙. 耗竭巨噬细胞抑制脂多糖诱导小鼠肾脏及全身炎症损伤的作用研究[J]. 诊断学理论与实践, 2021, 20(02): 195-200. |
[6] | 罗清琼, 陈福祥. 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019, 18(04): 387-393. |
[7] | 王晓斐, 高蓓莉. 肺癌免疫治疗标志物研究进展认识[J]. 诊断学理论与实践, 2018, 17(05): 494-498. |
[8] | 宋丹丹, 常春康, 郭娟, 许峰, 赵佑山, 吴凌云. 骨髓增生异常综合征患者骨髓巨噬细胞百分比异常及其意义[J]. 诊断学理论与实践, 2018, 17(04): 439-443. |
[9] | 娄加陶, 张宸梓. 外泌体的检测及临床应用[J]. 诊断学理论与实践, 2018, 17(02): 141-146. |
[10] | 毛敏静, 张斌斌, 叶廷军, 王学锋. 巨噬细胞在甲状腺细针穿刺细胞学诊断中的意义[J]. 诊断学理论与实践, 2018, 17(01): 56-59. |
[11] | 王唯一, 章永平, 袁耀宗, 吴云林, 陈平. 活化STAT蛋白抑制剂1调控巨噬细胞迁移能力及机制的实验研究[J]. 诊断学理论与实践, 2017, 16(01): 60-65. |
[12] | 方一, 刘倩, 钟捷, 龚彪, 夏璐,. 巨噬细胞极化对溃疡性结肠炎病情发展的影响[J]. 诊断学理论与实践, 2015, 14(06): 568-572. |
[13] | 周盈盈, 周桢源, 黄新芳, 沈南,. miR-363-3p促进人浆细胞样树突细胞干扰素α分泌的机制研究[J]. 诊断学理论与实践, 2014, 13(03): 255-259. |
[14] | 徐昊平, 车锦凤, 曹卫国, 马韬, 金冶宁,. 纵隔淋巴结指突状树突细胞肉瘤报道一例[J]. 诊断学理论与实践, 2006, 5(06): 535-536. |
[15] | 姚一芸,程毅敏,朱琦,叶为德,唐勇,胡钧培. 脐血血浆化疗增敏作用的实验研究[J]. 诊断学理论与实践, 2004, 3(06): 47-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||