诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (06): 630-633.doi: 10.16150/j.1671-2870.2019.06.005
收稿日期:
2019-12-17
出版日期:
2019-12-25
发布日期:
2019-12-25
通讯作者:
吴东
E-mail:dwudwu@hotmail.com
基金资助:
Received:
2019-12-17
Online:
2019-12-25
Published:
2019-12-25
中图分类号:
房莹, 吴东, 常春康. 癌基因与抑癌基因在伯基特淋巴瘤发生发展中的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 630-633.
[1] |
Dang CV. MYC on the path to cancer[J]. Cell, 2012, 149(1):22-35.
doi: 10.1016/j.cell.2012.03.003 pmid: 22464321 |
[2] |
López C, Kleinheinz K, Aukema SM, et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma[J]. Nat Commun, 2019, 10(1):1459.
doi: 10.1038/s41467-019-08578-3 URL |
[3] | Doose G, Haake A, Bernhart SH, et al. MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells[J]. Proc Natl Acad Sci U S A, 2015, 112(38):E5261-5270. |
[4] | Poole CJ, Zheng W, Lee H, et al. Targeting the MYC Oncogene in Burkitt Lymphoma through HSP90 inhibition[J]. Cancers, 2018, 10(11):pii448. |
[5] |
Egle A, Harris AW, Bouillet P, et al. Bim is a suppressor of Myc-induced mouse B cell leukemia[J]. Proc Natl Acad Sci U S A, 2004, 101(16):6164-6169.
doi: 10.1073/pnas.0401471101 URL |
[6] |
Frenzel A, Labi V, Chmelewskij W, et al. Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad[J]. Blood, 2010, 115(5):995-1005.
doi: 10.1182/blood-2009-03-212670 pmid: 19965635 |
[7] |
Michalak EM, Jansen ES, Happo L, et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis[J]. Cell Death Differ, 2009, 16(5):684-696.
doi: 10.1038/cdd.2008.195 pmid: 19148184 |
[8] | Hrckulak D, Kolar M, Strnad H, et al. TCF/LEF transcription factors: An update from the internet resources[J]. Cancers, 2016, 8(7) pii: E70. |
[9] |
Kee BL. E and ID proteins branch out[J]. Nat Rev Immunol, 2009, 9(3):175-184.
doi: 10.1038/nri2507 URL |
[10] |
Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics[J]. Nature, 2012, 490(7418):116-120.
doi: 10.1038/nature11378 URL |
[11] |
Cato MH, Chintalapati SK, Yau IW, et al. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells[J]. Mol Cell Biol, 2011, 31(1):127-137.
doi: 10.1128/MCB.00650-10 URL |
[12] |
Peled JU, Yu JJ, Venkatesh J, et al. Requirement for cyclin D3 in germinal center formation and function[J]. Cell Res, 2010, 20(6):631-646.
doi: 10.1038/cr.2010.55 URL |
[13] | Schmitz R, Ceribelli M, Pittaluga S, et al. Oncogenic mechanisms in Burkitt lymphoma[J]. Cold Spring Harb Perspect Med, 2014, 4(2)pii: a014282. |
[14] |
Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization[J]. Genes Dev, 1998, 12(22):3499-3511.
doi: 10.1101/gad.12.22.3499 URL |
[15] |
Preudhomme C, Dervite I, Wattel E, et al. Clinical significance of p53 mutations in newly diagnosed Burkitt's lymphoma and acute lymphoblastic leukemia: a report of 48 cases[J]. J Clin Oncol, 1995, 13(4):812-820.
pmid: 7707106 |
[16] | Hüllein J, Slabicki M, Rosolowski M, et al. MDM4 is targeted by 1q gain and drives disease in Burkitt lymphoma[J]. Cancer Res, 2019, 79(12):3125-3138. |
[17] | Farhat M, Poissonnier A, Hamze A, et al. Reversion of apoptotic resistance of TP53-mutated Burkitt lymphoma B-cells to spindle poisons by exogenous activation of JNK and p38 MAP kinases[J]. Cell Death Dis, 2014, 5:e1201. |
[18] |
Lee JH, Park SJ, Hariharasudhan G, et al. ID3 regulates the MDC1-mediated DNA damage response in order to maintain genome stability[J]. Nat Commun, 2017, 8(1):903.
doi: 10.1038/s41467-017-01051-z URL |
[19] |
Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lymphoma[J]. Nat Genet, 2012, 44(12):1321-1325.
doi: 10.1038/ng.2468 URL |
[20] | Helming KC, Wang X, Wilson BG, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers[J]. Nat Med, 2014, 20(3):251-254. |
[21] |
Shen J, Peng Y, Wei L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP Inhibitors[J]. Cancer Discov, 2015, 5(7):752-767.
doi: 10.1158/2159-8290.CD-14-0849 URL |
[1] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[2] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
[3] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[4] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[5] | 范春丽, 吴涛, 薛锋, 胡文雪, 王存邦, 白海. MUM1/IRF4阳性弥漫大B细胞淋巴瘤一例治疗报告并文献复习[J]. 诊断学理论与实践, 2021, 20(04): 399-400. |
[6] | 章淼滢, 罗飞宏. 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021, 20(03): 229-232. |
[7] | 徐兆平, 王浩飞. ZNF692基因在肾透明细胞癌中的表达及其与患者预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 292-296. |
[8] | 孟磊俊, 张晶, 王雪莉, 李治, 张泓, 曾乃燕. 儿童伯基特淋巴瘤中差异表达基因的鉴定及临床应用[J]. 诊断学理论与实践, 2020, 19(03): 248-257. |
[9] | 钟明, 赵峰, 吴衍, 裴文江, 高航, 郭善禹, 戴谦诚, 张伟. 血浆游离DNA中抑癌基因肿瘤高甲基化基因1甲基化检测方法的建立及其在乳腺疾病诊断中的意义[J]. 诊断学理论与实践, 2019, 18(2): 144-148. |
[10] | 余红, 王一飞, 陈佳, 陈洁, 李斌. 青蒿素及其衍生物在皮肤疾病中的作用机制研究及临床应用[J]. 诊断学理论与实践, 2019, 18(2): 233-236. |
[11] | 魏坚, 高平进, 韩卫青. α7烟碱型乙酰胆碱受体激动剂对TGF-β1介导的血管外膜成纤维细胞表型转化影响的体外研究[J]. 诊断学理论与实践, 2019, 18(1): 56-60. |
[12] | 徐婷婷, 张文. 感染与中性粒细胞胞质抗体相关性血管炎间相关性的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 698-703. |
[13] | 刘海霞, 瞿介明. 肺部微生态及其与肺癌关系的研究进展[J]. 诊断学理论与实践, 2019, 18(05): 496-502. |
[14] | 蔡业冰, 任家俊, 郝风节, 叶枫, 杨宇尘, 龚笑勇, 马迪, 王俊青, 陈拥军. 人类假基因在以肝癌为主的肿瘤中的作用及研究进展[J]. 诊断学理论与实践, 2019, 18(05): 590-594. |
[15] | 时国朝, 黄春容. 呼吸道及肠道微生物菌群与支气管哮喘的发病及治疗[J]. 诊断学理论与实践, 2019, 18(03): 241-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||