Journal of Diagnostics Concepts & Practice ›› 2017, Vol. 16 ›› Issue (01): 17-26.doi: 10.16150/j.1671-2870.2017.01.005
• Experts forum • Previous Articles Next Articles
Received:
2017-01-25
Online:
2017-02-25
Published:
2022-06-20
CLC Number:
[1] Estey EH.Acute myeloid leukemia: 2013 update on risk-stratification and management[J]. Am J Hematol,2013, 88(4):318-327. [2] Pabst T, Vellenga E, van Putten W, et al. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine[J]. Blood,2012,119(23):5367-5373. [3] Ravandi F.Relapsed acute myeloid leukemia: why is there no standard of care?[J]. Best Pract Res Clin Haematol,2013,26(3):253-259. [4] Bachas C, Schuurhuis GJ, Assaraf YG, et al.The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse[J]. Leukemia,2012,26(6):1313-1320. [5] Terwijn M, van Putten WL, Kelder A, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study[J]. J Clin Oncol,2013, 31(31):3889-3897. [6] Campana D, Pui CH.Detection of minimal residual di-sease in acute leukemia: methodologic advances and clinical significance[J]. Blood,1995,85(6):1416-1434. [7] Kern W, Bacher U, Haferlach C, et al.The role of multiparameter flow cytometry for disease monitoring in AML[J]. Best Pract Res Clin Haematol,2010,23(3):379-390. [8] Kern W, Voskova D, Schoch C, et al.Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia[J]. Blood,2004,104(10):3078-3085. [9] Coustan-Smith E, Campana D.Should evaluation for mi-nimal residual disease be routine in acute myeloid leukemia?[J]. Curr Opin Hematol,2013,20(2):86-92. [10] van der Velden VH, van der Sluijs-Geling A, Gibson BE, et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol[J]. Leukemia,2010,24(9):1599-1606. [11] Loken MR, Alonzo TA, Pardo L, et al.Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group[J]. Blood,2012,120(8):1581-1588. [12] Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, et al.A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia[J]. Leukemia,2016,30(2):439-446. [13] Al-Mawali A, Gillis D, Hissaria P, et al.Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry[J]. Am J Clin Pathol,2008,129(6):934-945. [14] Campana D.Status of minimal residual disease testing in childhood haematological malignancies[J]. Br J Haematol,2008,143(4):481-489. [15] Buccisano F, Maurillo L, Del Principe MI, et al.Prognostic and therapeutic implications of minimal residual di-sease detection in acute myeloid leukemia[J]. Blood,2012,119(2):332-341. [16] Inaba H, Coustan-Smith E, Cao X, et al.Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia[J]. J Clin Oncol,2012, 30(29):3625-3632. [17] Chen X, Xie H, Wood BL, et al.Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia[J]. J Clin Oncol,2015,33(11):1258-1264. [18] Köhnke T, Sauter D, Ringel K, et al.Early assessment of minimal residual disease in AML by flow cytometry during aplasia identifies patients at increased risk of relapse[J]. Leukemia,2015,29(2):377-386. [19] Sievers EL, Lange BJ, Alonzo TA, et al.Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia[J]. Blood,2003,101(9):3398-3406. [20] Al-Mawali A, Gillis D, Lewis I.The use of receiver ope-rating characteristic analysis for detection of minimal residual disease using five-color multiparameter flow cytometry in acute myeloid leukemia identifies patients with high risk of relapse[J]. Cytometry B Clin Cytom,2009,76(2):91-101. [21] Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, et al.Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia[J]. Leukemia,2016,30(3):708-715. [22] MRD-AML-BFM Study Group, Langebrake C, Creutzig U, et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group[J]. J Clin Oncol,2006,24(22):3686-3692. [23] Leung W, Pui CH, Coustan-Smith E, et al.Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia[J]. Blood,2012, 120(2):468-472. [24] Paietta E.Minimal residual disease in acute myeloid leukemia: coming of age[J]. Hematology Am Soc Hematol Educ Program,2012,2012:35-42. [25] Tierens A, Bjørklund E, Siitonen S, et al.Residual di-sease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study[J]. Br J Haematol,2016,174(4):600-609. [26] Karol SE, Coustan-Smith E, Cao X, et al.Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy[J]. Br J Haematol,2015,168(1):94-101. [27] Buccisano F, Maurillo L, Piciocchi A, et al.Minimal residual disease negativity in elderly patients with acute myeloid leukemia may indicate different postremission strategies than in younger patients[J]. Ann Hematol,2015, 94(8):1319-1326. [28] Buccisano F, Maurillo L, Gattei V, et al.The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia[J]. Leukemia,2006,20(10):1783-1789. [29] San Miguel JF, Vidriales MB, López-Berges C, et al.Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification[J]. Blood,2001,98(6):1746-1751. [30] Zeijlemaker W, Kelder A, Wouters R, et al. Absence of leukaemic CD34+ cells in acute myeloid leukaemia is of high prognostic value: a longstanding controversy deciphered[J/OL]. Br J Haematol.2015-06-24[2017-01-20].https://www.ncbi.nlm.nih.gov/pubmed/26104974. [31] Vidriales MB, Pérez-López E, Pegenaute C, et al.Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia[J]. Leuk Res,2016,40:1-9. [32] Buccisano F, Maurillo L, Spagnoli A, et al.Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia[J]. Blood,2010,116(13):2295-2303. [33] Freeman SD, Virgo P, Couzens S, et al.Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia[J]. J Clin Oncol,2013,31(32):4123-4131. [34] Grimwade D, Freeman SD.Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"?[J]. Blood,2014,124(23):3345-3355. [35] Yin JA, O'Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core bin-ding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial[J]. Blood,2012,120(14):2826-2835. [36] Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program[J]. Leukemia,2003,17(12):2318-2357. [37] Abildgaard L, Ommen HB, Lausen B, et al.A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia[J]. Eur J Haematol,2013,91(5):394-398. [38] Scholl C, Breitinger H, Schlenk RF, et al.Development of a real-time RT-PCR assay for the quantification of the most frequent MLL/AF9 fusion types resulting from translocation t(9;11)(p22;q23) in acute myeloid leukemia[J]. Genes Chromosomes Cancer,2003,38(3):274-280. [39] Scholl C, Schlenk RF, Eiwen K, et al.The prognostic value of MLL-AF9 detection in patients with t(9;11)(p22;q23)-positive acute myeloid leukemia[J]. Haematologica,2005,90(12):1626-1634. [40] Gu BW, Xiong H, Zhou Y, et al.Variant-type PML-RAR(alpha) fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RAR(alpha) gene and identification of a new clinical subtype resistant to retinoic acid therapy[J]. Proc Natl Acad Sci U S A,2002,99(11):7640-7645. [41] Jourdan E, Boissel N, Chevret S, et al.Prospective eva-luation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia[J]. Blood,2013,121(12):2213-2223. [42] Zhu HH, Zhang XH, Qin YZ, et al.MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial[J]. Blood,2013,121(20):4056-4062. [43] Corbacioglu A, Scholl C, Schlenk RF, et al.Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia[J]. J Clin Oncol,2010, 28(23):3724-3729. [44] Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med,2013,368(22):2059-2074. [45] Wang YY, Zhou GB, Yin T, et al.AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec[J]. Proc Natl Acad Sci U S A,2005,102(4):1104-1109. [46] Krönke J, Schlenk RF, Jensen KO, et al.Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group[J]. J Clin Oncol,2011,29(19):2709-2716. [47] Shayegi N, Kramer M, Bornhäuser M, et al.The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML[J]. Blood,2013,122(1):83-92. [48] Ivey A, Hills RK, Simpson MA, et al.Assessment of Minimal Residual Disease in Standard-Risk AML[J]. N Engl J Med,2016,374(5):422-433. [49] Nomdedéu JF, Hoyos M, Carricondo M, et al.Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML[J]. Leukemia,2013, 27(11):2157-2164. [50] Zhong L, Wei L, Chen J, et al.WT1 Expression in Circulating RNA as a Minimal Residual Disease Marker for AML Patients After Stem-Cell Transplantation[J]. Mol Diagn Ther,2015,19(4):205-212. [51] Malagola M, Skert C, Borlenghi E, et al.Postremission sequential monitoring of minimal residual disease by WT1 Q-PCR and multiparametric flow cytometry assessment predicts relapse and may help to address risk-adapted therapy in acute myeloid leukemia patients[J]. Cancer Med,2016,5(2):265-274. [52] Pozzi S, Geroldi S, Tedone E, et al.Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression[J]. Br J Haematol,2013,160(4):503-509. [53] Cilloni D, Renneville A, Hermitte F, et al.Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study[J]. J Clin Oncol,2009,27(31):5195-5201. [54] Döhner H, Estey E, Grimwade D, et al.Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood,2017, 129(4):424-447. [55] Zuffa E, Franchini E, Papayannidis C, et al.Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients[J]. Oncotarget,2015,6(31):31284-31294. [56] Yan XJ, Xu J, Gu ZH, et al.Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia[J]. Nat Genet,2011, 43(4):309-315. [57] Shen Y, Zhu YM, Fan X, et al.Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia[J]. Blood,2011,118(20):5593-5603. [58] Shlush LI, Zandi S, Mitchell A, et al.Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia[J]. Nature,2014,506(7488):328-333. [59] Pløen GG, Nederby L, Guldberg P, et al.Persistence of DNMT3A mutations at long-term remission in adult patients with AML[J]. Br J Haematol,2014,167(4):478-486. [60] Alikian M, Ellery P, Forbes M, et al.Next-Generation Sequencing-Assisted DNA-Based Digital PCR for a Personalized Approach to the Detection and Quantification of Residual Disease in Chronic Myeloid Leukemia Patients[J]. J Mol Diagn,2016,18(2):176-189. [61] Drandi D, Kubiczkova-Besse L, Ferrero S, et al.Minimal Residual Disease Detection by Droplet Digital PCR in Multiple Myeloma, Mantle Cell Lymphoma, and Follicular Lymphoma: A Comparison with Real-Time PCR[J]. J Mol Diagn,2015,17(6):652-660. [62] Jennings LJ, George D, Czech J, et al.Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR[J]. J Mol Diagn,2014,16(2):174-179. [63] Bacher U, Dicker F, Haferlach C, et al.Quantification of rare NPM1 mutation subtypes by digital PCR[J]. Br J Haematol,2014,167(5):710-714. [64] Yu C, Kong QL, Zhang YX, et al.Clinical significance of day 5 peripheral blast clearance rate in the evaluation of early treatment response and prognosis of patients with acute myeloid leukemia[J]. J Hematol Oncol,2015,8:48. [65] Cilloni D, Messa F, Arruga F, et al.Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy[J]. Haematologica,2008,93(6):921-924. [66] Maurillo L, Buccisano F, Spagnoli A, et al.Monitoring of minimal residual disease in adult acute myeloid leukemia using peripheral blood as an alternative source to bone marrow[J]. Haematologica,2007,92(5):605-611. [67] Díez-Campelo M, Pérez-Simón JA, Pérez J, et al.Minimal residual disease monitoring after allogeneic transplantation may help to individualize post-transplant therapeutic strategies in acute myeloid malignancies[J]. Am J Hematol,2009,84(3):149-152. [68] Walter RB, Gooley TA, Wood BL, et al.Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia[J]. J Clin Oncol,2011,29(9):1190-1197. [69] Walter RB, Gyurkocza B, Storer BE, et al.Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation[J]. Leukemia,2015,29(1):137-144. [70] Walter RB, Buckley SA, Pagel JM, et al.Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission[J]. Blood,2013,122(10):1813-1821. [71] Rubnitz JE, Inaba H, Dahl G, et al.Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial[J]. Lancet Oncol,2010,11(6):543-552. [72] Lambert J, Lambert J, Nibourel O, et al.MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin[J]. Oncotarget,2014,5(15):6280-6288. [73] Prebet T, Bertoli S, Delaunay J, et al.Anthracycline dose intensification improves molecular response and outcome of patients treated for core binding factor acute myeloid leukemia[J]. Haematologica,2014,99(10):e185-e187. [74] Béné MC, Nebe T, Bettelheim P, et al.Immunophenoty-ping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10[J]. Leukemia,2011,25(4):567-574. [75] Feller N, van der Velden VH, Brooimans RA, et al. Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting[J]. Blood Cancer J,2013,3:e129. [76] Grossmann V, Schnittger S, Kohlmann A, et al.A novel hierarchical prognostic model of AML solely based on molecular mutations[J]. Blood,2012,120(15):2963-2972. |
[1] | GAO Yanting, ZHAO Jinyan, WANG Juan, LI Jia, XU Wen, LI Li, LIN Lihui. Analysis of bone marrow lymphocyte subsets in patients with acute myeloid leukemia and its clinical significance [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 407-413. |
[2] | PENG Zhenping, XIANG Xixi, ZHANG Sujiang, LI Jiaming. Chronic neutrophilic leukemia with leukemia-like reaction as the first-onset manifestation: a report of 2 cases and literature review [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 122-128. |
[3] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 585-587. |
[4] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 718-722. |
[5] | ZHU Qingfeng, HU Xiaoli, ZHU Jianyi, LANG Wenjing, ZHONG Jihua, CHEN Fangyuan. Study on mechanism of synergistic effect of ASP2215 combined with SAHA on FLT3-ITD mutant cell line [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(05): 538-546. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(02): 211-215. |
[7] | BAO Pingping, WU Chunxiao, ZHANG Minlu, GU Kai, XIANG Yongmei, PENG Peng, GONG Yangming, SHI Liang, ZOU Zhen.. Epidemiological features of major subtypes of leukemia and its incidence trends in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 484-491. |
[8] | WANG Shu, ZHANG Yunxiang, SUI Jingni, LU Jing, FAN Huiyong, WANG Chao, CHEN Bing.. Analysis of additional mutation pattern accompanied with CEBPA mutations in patients with the cytogenetically normal acute myeloid leukemia [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 498-503. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 1-2. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 3-6. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 7-11. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 12-16. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 27-31. |
[14] | ZHU Jianyi, LANG Wenjing, CHEN Fangyuan, XU Zhuoran, SHEN Lijing, ZHONG Jihua. Effect of arsenic trioxide on EVI1 gene in regulating hematopoietic transcription factors in vitro [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 42-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||