Journal of Diagnostics Concepts & Practice ›› 2021, Vol. 20 ›› Issue (02): 130-137.doi: 10.16150/j.1671-2870.2021.02.003
• Experts forum • Previous Articles Next Articles
Received:
2021-04-10
Online:
2021-04-25
Published:
2022-06-28
CLC Number:
[1] |
Wheeler DC, James J, Patel D, et al. SGLT2 inhibitors: slowing of chronic kidney disease progression in type 2 diabetes[J]. Diabetes Ther, 2020, 11(12):2757-2774.
doi: 10.1007/s13300-020-00930-x URL |
[2] | Zhang L, Zhao MH, Zuo L, et al. China Kidney Disease Network (CK-NET) 2016 Annual Data Report[J]. Kidney Int Suppl, 2020, 10(2):e97-e185. |
[3] | Luk AOY, Hui EMT, Sin MC, et al. Declining trends of cardiovascular-renal complications and mortality in type 2 diabetes: the Hong Kong diabetes database[J]. Dia-betes Care, 2017, 40(7):928-935. |
[4] |
Ito M, Tanaka T. The anticipated renoprotective effects of sodium-glucose cotransporter 2 inhibitors[J]. Intern Med, 2018, 57(15):2105-2114.
doi: 10.2169/internalmedicine.9842-17 URL |
[5] |
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306.
doi: 10.1056/NEJMoa1811744 URL |
[6] |
Mima A. Sodium-glucose cotransporter 2 inhibitors in patients with non-diabetic chronic kidney disease[J]. Adv Ther, 2021, 38(5):2201-2212.
doi: 10.1007/s12325-021-01735-5 URL |
[7] | Neal B, Perkovic V, Matthews DR, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(2):2099. |
[8] |
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4):347-357.
doi: 10.1056/NEJMoa1812389 URL |
[9] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[10] |
Wanner C, Inzucchi SE, Zinman B, et al. Consistent effects of empagliflozin on cardiovascular and kidney outcomes irrespective of diabetic kidney disease categories: insights from the EMPA-REG OUTCOME trial[J]. Diabetes Obes Metab, 2020, 22(12):2335-2347.
doi: 10.1111/dom.14158 URL |
[11] |
Wanner C, Inzucchi SE, Zinman B, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334.
doi: 10.1056/NEJMoa1515920 URL |
[12] |
Cherney DZI, Heerspink HJL, Frederich R, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials[J]. Diabetologia, 2020, 63(6):1128-1140.
doi: 10.1007/s00125-020-05133-4 pmid: 32236732 |
[13] |
Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney di-sease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617.
doi: 10.1016/S2213-8587(19)30180-9 URL |
[14] |
Lo KB, Gul F, Ram P, et al. The effects of SGLT2 inhibitors on cardiovascular and renal outcomes in diabetic patients: a systematic review and meta-analysis[J]. Cardiorenal Med, 2020, 10(1):1-10.
doi: 10.1159/000503919 URL |
[15] |
Heerspink HJL, Karasik A, Thuresson M, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice(CVD-REAL 3): a multinational observational cohort study[J]. Lancet Diabetes Endocrinol, 2020, 8(1):27-35.
doi: 10.1016/S2213-8587(19)30384-5 URL |
[16] | Pasternak B, Wintzell V, Melbye M, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: scandinavian cohort study[J]. BMJ, 2020, 369:m1186. |
[17] | 付平. DAPA-CKD预设的IgA肾病和CKD4期亚组结果重磅发布[N]. 中国医学论坛报, 2021. |
[18] |
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15):1413-1424.
doi: 10.1056/NEJMoa2022190 URL |
[19] |
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials[J]. Lancet, 2020, 396(10254):819-829.
doi: S0140-6736(20)31824-9 pmid: 32877652 |
[20] |
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation, 2014. 129(5):587-597.
doi: 10.1161/CIRCULATIONAHA.113.005081 pmid: 24334175 |
[21] |
Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of dia-betes mellitus: cardiovascular and kidney effects, po-tential mechanisms, and clinical applications[J]. Circulation, 2016, 134(10):752-772.
doi: 10.1161/CIRCULATIONAHA.116.021887 pmid: 27470878 |
[22] |
Lim BJ, Yang JW, Zou J, et al. Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury[J]. Kidney Int, 2017, 92(6):1395-1403.
doi: 10.1016/j.kint.2017.04.010 URL |
[23] |
Carlström M, Wilcox CS, Arendshorst WJ. Renal autore-gulation in health and disease[J]. Physiol Rev, 2015, 95(2):405-511.
doi: 10.1152/physrev.00042.2012 pmid: 25834230 |
[24] |
Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease?[J]. Curr Opin Nephrol Hypertens, 2017, 26(5):358-367.
doi: 10.1097/MNH.0000000000000343 URL |
[25] |
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD[J]. J Am Soc Nephrol, 2015, 26(2):258-269.
doi: 10.1681/ASN.2014030278 URL |
[26] |
Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats Ⅱ. Mechanical stress on podocytes as a pathway to sclerosis[J]. Kidney Int, 1992, 42(1):148-160.
pmid: 1635344 |
[27] |
Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension[J]. Semin Nephrol, 2012, 32(4):327-341.
doi: 10.1016/j.semnephrol.2012.06.004 pmid: 22958487 |
[28] |
Mima A, Abe H, Nagai K, et al. Activation of Src me-diates PDGF-induced Smad1 phosphorylation and contributes to the progression of glomerulosclerosis in glomerulonephritis[J]. PLoS One, 2011, 6(3):e17929.
doi: 10.1371/journal.pone.0017929 URL |
[29] |
Mima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J]. Diabetes, 2012, 61(11):2967-2979.
doi: 10.2337/db11-1824 URL |
[30] |
Srivastava T, Celsi GE, Sharma M, et al. Fluid flow shear stress over podocytes is increased in the solitary kidney[J]. Nephrol Dial Transplant, 2014, 29(1):65-72.
doi: 10.1093/ndt/gft387 URL |
[31] |
Srivastava T, Thiagarajan G, Alon US, et al. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract[J]. Nephrol Dial Transplant, 2017, 32(5):759-765.
doi: 10.1093/ndt/gfw430 URL |
[32] |
Scholtes RA, van Raalte DH, Correa-Rotter R, et al. The effects of dapagliflozin on cardio-renal risk factors in patients with type 2 diabetes with or without renin-angiotensin system inhibitor treatment: a post hoc analysis[J]. Diabetes Obes Metab, 2020, 22(4):549-556.
doi: 10.1111/dom.13923 pmid: 31742881 |
[33] | Hansell P, Welch WJ, Blantz RC, et al. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension[J]. Clin Exp Pharmacol Physiol, 2013, 40(2):123-137. |
[34] |
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(5):R1009-R1022.
doi: 10.1152/ajpregu.00809.2010 URL |
[35] |
Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor,empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice[J]. Sci Rep, 2016, 6:26428.
doi: 10.1038/srep26428 URL |
[36] |
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis[J]. Diabetes Care, 2016, 39(7):1108-1114.
doi: 10.2337/dc16-0330 pmid: 27289126 |
[37] |
Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition[J]. Diabetes Obes Metab, 2016, 18(2):125-134.
doi: 10.1111/dom.12578 pmid: 26403227 |
[38] |
Gambhir D, Ananth S, Veeranan-Karmegam R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2208-2217.
doi: 10.1167/iovs.11-8447 URL |
[39] |
Brotman DJ, Bash LD, Qayyum R, et al. Heart rate varia-bility predicts ESRD and CKD-related hospitalization[J]. J Am Soc Nephrol, 2010, 21(9):1560-1570.
doi: 10.1681/ASN.2009111112 pmid: 20616169 |
[40] |
Kobayashi S, Ikeda T, Moriya H, et al. Asymptomatic cerebral lacunae in patients with chronic kidney disease[J]. Am J Kidney Dis, 2004, 44(1):35-41.
pmid: 15211435 |
[41] | Morgan DA, Anderson EA, Mark AL. Renal sympathetic nerve activity is increased in obese Zucker rats[J]. Hyper-tension, 1995, 25(4 Pt 2):834-838. |
[42] |
Pestell RG, Kirsner RL, Best JD. Validation and evaluation of test for sympathetic cholinergic function in diabetes mellitus[J]. Diabetes, 1991, 40(7):867-872.
pmid: 2060722 |
[43] |
Ohtomo Y, Meister B, Hökfelt T, et al. Coexisting NPY and NE synergistically regulate renal tubular Na+, K+-ATPase activity[J]. Kidney Int, 1994, 45(6):1606-1613.
pmid: 7523751 |
[44] | Herat LY, Magno AL, Rudnicka C, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection[J]. JACC Basic Transl Sci, 2020, 5(2):169-179. |
[45] |
Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity[J]. Kidney Int, 2011, 79(8):883-896.
doi: 10.1038/ki.2010.526 URL |
[46] |
Mima A, Yasuzawa T, Nakamura T, et al. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes[J]. Sci Rep, 2020, 10(1):5775.
doi: 10.1038/s41598-020-62579-7 URL |
[47] |
Kiuchi S, Hisatake S, Kabuki T, et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report[J]. Drug Discov Ther, 2018, 12(1):51-54.
doi: 10.5582/ddt.2017.01069 URL |
[48] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[49] |
Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J]. Kidney Int, 2013, 85(4):962-971.
doi: 10.1038/ki.2013.356 URL |
[50] |
Petrykiv S, Sjöström CD, Greasley PJ, et al. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function[J]. Clin J Am Soc Nephrol, 2017, 12(5):751-759.
doi: 10.2215/CJN.10180916 URL |
[1] | Chinese Society of Endocrinology,Chinese Medical Association , et al . Expert suggestion for diabetes management during the recent COVID-19 pandemic [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(02): 136-138. |
[2] | CHEN Xuyang, GU Weiqiong. Study on detection of insulin autoimmune antibodies: limitation and countermeasures [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(01): 95-98. |
[3] | WANG Guangyu, YANG Xin, ZHANG Lijuan, TAN Jiaorong. The relationship between plasma total testosterone and osteocalcin levels in males with newly diagnosed type 2 diabetes [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(06): 573-578. |
[4] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 225-228. |
[5] | WANG Shanshan, ZHOU Yingxia, HU Lijuan, NIU Jingya, WANG Tiange, LI Mian, ZHAO Zhiyun, XU Yu, LU Jieli, XU Min, BI Yufang, NI Hengru. The correlation between different fat distribution indices and dyslipidemia in middle-aged population in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 177-182. |
[6] | DENG Lin, DING Yi, WANG Ping, BIAN Bingxian, SHEN Lisong. Application of urinary neutrophil gelatinase-associated lipocalin/creatinine ratio in early diagnosis and severity assessment of renal injury in patients with type 2 diabetes mellitus [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(1): 61-65. |
[7] | HOU Yanan, XUAN Liping, ZHAO Zhiyun, LI Mian, CHEN Yuhong, DAI Meng, XU Min, BI Yufang, WANG Weiqing, GAO Jinli. Epidemiological study on association of uric acid to creatinine ratio with metabolic syndrome in middle-aged and elderly populationin Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(1): 44-50. |
[8] | XUAN Liping, HOU Yanan, PENG Kui, ZHAO Zhiyun, LI Mian, CHEN Yuhong, DAI Meng, XU Min, BI Yufang, WANG Weiqing, ZHANG Di, XU Jiji. Correlation of subclinical hypothyroidism with carotid intima media thickness in Chinese population [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 444-448. |
[9] | JI Pengcheng, ZHANG Shu, SUN Jing, JIANG Shihu. Analysis on levels of vitamins in middle-aged and elderly patients with diabetes mellitus in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(03): 285-289. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(03): 357-359. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(03): 352-356. |
[12] | DU Yiqiao, WANG Wenhui, LIU Wanchao, NIU Jing, SHI Xuejuan, YANG Zhenhua. Establishment of a normal reference range for 1,5-anhydroglucitol [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(02): 181-185. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 5-10. |
[14] | LIN Ruhai, WU Xiaohong, JIANG Zhengrong, YANG Xinna, ZHUANG Duanrong, WU Lizhen.. Associated factors for within-day and day-to-day glycemic variability in type 2 diabetes patients [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 516-521. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 553-556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||