Journal of Diagnostics Concepts & Practice ›› 2022, Vol. 21 ›› Issue (05): 581-587.doi: 10.16150/j.1671-2870.2022.05.006
• Original articles • Previous Articles Next Articles
XIE Wen, LIANG Huaiyu, DONG Lei, YUAN Fei, WANG Chaofu, GUO Yan()
Received:
2020-07-07
Online:
2022-10-25
Published:
2023-01-29
Contact:
GUO Yan
E-mail:guoyan@histomed.com
CLC Number:
XIE Wen, LIANG Huaiyu, DONG Lei, YUAN Fei, WANG Chaofu, GUO Yan. Analysis of genetic status of pivotal driver genes in pancreatic ductal adenocarcinoma and their correlation with clinicopathologic features[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 581-587.
临床病理特征 | 例数(%) |
---|---|
性别 | |
男 | 180(66.91) |
女 | 89(33.01) |
年龄(岁) | |
≤70 | 221(82.16) |
>70 | 48(17.84) |
肿瘤部位 | |
胰体尾 | 130(48.33) |
胰头 | 139(51.67) |
肿瘤分化程度 | |
高~中分化 | 238(88.48) |
低分化 | 31(11.52) |
存在神经侵犯 | 255(94.80) |
存在脉管内癌栓 | 104(38.66) |
病理T分期 | |
T1 | 41(15.24) |
T2 | 145(53.90) |
T3/T4 | 83(30.86) |
病理N分期 | |
N0 | 128(47.58) |
N1 | 117(43.50) |
N2 | 24(8.92) |
存在远处转移 | 42(15.61) |
TNM分期 | |
Ⅰ~Ⅱ | 190(70.63) |
Ⅲ~Ⅳ | 79(29.37) |
临床病 理特征 | KRAS | TP53 | SMAD4 | CDKN2A | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WT | MT | χ2值 | P值 | WT | MT | χ2值 | P值 | WT | MT | χ2值 | P值 | WT | MT | χ2值 | P值 | ||||
性别 | 3.587 | 0.058 | 0.063 | 0.801 | 0.268 | 0.605 | 0.729 | 0.393 | |||||||||||
男 | 37 | 143 | 80 | 100 | 154 | 26 | 162 | 18 | |||||||||||
女 | 10 | 79 | 41 | 48 | 74 | 15 | 77 | 12 | |||||||||||
年龄(岁) | 5.103 | 0.024 | 1.321 | 0.250 | 0.092 | 0.762 | 0.032 | 0.858 | |||||||||||
≤70 | 44 | 177 | 103 | 118 | 188 | 33 | 196 | 25 | |||||||||||
>70 | 3 | 45 | 18 | 30 | 40 | 8 | 43 | 5 | |||||||||||
肿瘤部位 | 2.294 | 0.130 | 3.362 | 0.067 | 0.004 | 0.950 | 0.938 | 0.333 | |||||||||||
胰体尾 | 18 | 112 | 51 | 79 | 110 | 20 | 118 | 12 | |||||||||||
胰头 | 29 | 110 | 70 | 69 | 118 | 21 | 121 | 18 | |||||||||||
肿瘤分化程度 | 2.951 | 0.086 | 5.206 | 0.023 | 0.469 | 0.594 | 0.077 | 1.000 | |||||||||||
高~中分化 | 45 | 193 | 113 | 125 | 203 | 35 | 211 | 27 | |||||||||||
低分化 | 2 | 29 | 8 | 23 | 25 | 6 | 28 | 3 | |||||||||||
有神经侵犯 | 43 | 212 | 1.262 | 0.277 | 113 | 142 | 0.883 | 0.347 | 214 | 41 | 2.656 | 0.138 | 225 | 30 | 1.854 | 0.237 | |||
有脉管内癌栓 17 | 87 | 0.149 | 0.699 | 43 | 61 | 0.905 | 0.341 | 87 | 17 | 0.160 | 0.689 | 93 | 11 | 0.057 | 0.812 | ||||
病理T分期 | 0.224 | 0.860 | 2.022 | 0.364 | 0.349 | 0.919 | 0.724 | 0.773 | |||||||||||
T1 | 8 | 33 | 20 | 21 | 36 | 5 | 38 | 3 | |||||||||||
T2 | 24 | 121 | 69 | 76 | 122 | 23 | 128 | 17 | |||||||||||
T3/T4 | 15 | 68 | 32 | 51 | 70 | 13 | 73 | 10 | |||||||||||
病理N分期 | 1.791 | 0.394 | 5.093 | 0.078 | 0.737 | 0.766 | 0.649 | 0.770 | |||||||||||
N0 | 24 | 104 | 56 | 72 | 106 | 22 | 115 | 13 | |||||||||||
N1 | 17 | 100 | 49 | 68 | 101 | 16 | 102 | 15 | |||||||||||
N2 | 6 | 18 | 16 | 8 | 21 | 3 | 22 | 2 | |||||||||||
远处转移 | 0.540 | 0.462 | 0.408 | 0.523 | 0.429 | 0.512 | 0.808 | 0.592 | |||||||||||
无 | 38 | 189 | 104 | 123 | 191 | 36 | 200 | 27 | |||||||||||
有 | 9 | 33 | 17 | 25 | 37 | 5 | 39 | 3 | |||||||||||
临床分期 | 0.600 | 0.482 | 0.155 | 0.788 | 0.128 | 0.721 | 0.119 | 0.730 | |||||||||||
Ⅰ~Ⅱ | 31 | 159 | 84 | 106 | 162 | 28 | 168 | 22 | |||||||||||
Ⅲ~Ⅳ | 16 | 63 | 37 | 42 | 66 | 13 | 71 | 8 |
临床病理特征 | 例数(n) | 单因素分析 (P值) | 多因素分析 | |
---|---|---|---|---|
HR(95%CI) | P值 | |||
性别 | ||||
男 | 174 | 0.061 | ||
女 | 86 | |||
年龄(岁) | ||||
≤70 | 212 | 0.334 | ||
>70 | 48 | |||
肿瘤部位 | ||||
胰体尾 | 124 | 0.640 | ||
胰头 | 136 | |||
肿瘤分化程度 | ||||
高~中分化 | 231 | 0.345 | ||
低分化 | 29 | |||
神经侵犯 | ||||
无 | 13 | 0.011 | 1.00 | |
有 | 247 | 4.92(0.67~36.16) | 0.117 | |
脉管内癌栓 | ||||
无 | 157 | <0.001 | 1.00 | |
有 | 103 | 2.30(0.33~1.33) | <0.001 | |
病理T分期 | ||||
T1 | 40 | <0.001 | 1.00 | |
T2 | 140 | 1.90(0.90~4.01) | 0.092 | |
T3/T4 | 80 | 1.66(0.75~3.69) | 0.214 | |
病理N分期 | ||||
N0 | 123 | <0.001 | 1.00 | |
N1 | 113 | 0.90(0.58~1.38) | 0.621 | |
N2 | 24 | 0.66(0.33~1.33) | 0.241 | |
TNM分期 | ||||
Ⅰ~Ⅱ | 182 | <0.001 | 1.00 | |
Ⅲ~Ⅳ | 78 | 4.19(2.61~6.71) | <0.001 | |
CA19-9(U/mL) | ||||
≤37 | 44 | 0.032 | 1.00 | |
37~500 | 176 | 2.08(1.12~3.85) | 0.021 | |
>500 | 40 | 2.63(1.27~5.45) | 0.009 | |
KRAS突变 | ||||
无 | 45 | 0.922 | 1.00 | |
有 | 215 | 0.75(0.42~1.33) | 0.320 | |
TP53突变 | ||||
无 | 117 | 0.045 | 1.00 | |
有 | 143 | 4.30(1.32~14.04) | 0.016 | |
SMAD4突变 | ||||
无 | 220 | 0.319 | 1.00 | |
有 | 40 | 1.29(0.77~2.17) | 0.326 | |
CDKN2A突变 | ||||
无 | 231 | 0.497 | 1.00 | |
有 | 29 | 1.32(0.74~2.36) | 0.341 | |
基因突变数 | ||||
0~1个 | 108 | 0.257 | 1.00 | |
2~4个 | 152 | 0.30(0.08~1.06) | 0.061 |
[1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
doi: 10.3322/caac.21338 URL |
[2] |
Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11):2913-2921.
doi: 10.1158/0008-5472.CAN-14-0155 pmid: 24840647 |
[3] |
Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J]. Lancet, 2016, 388(10039):73-85.
doi: 10.1016/S0140-6736(16)00141-0 pmid: 26830752 |
[4] |
Chantrill LA, Nagrial AM, Watson C, et al. Precision medicine for advanced pancreas cancer: The Individuali-zed Molecular Pancreatic Cancer Therapy (IMPaCT) Trial[J]. Clin Cancer Res, 2015, 21(9):2029-2037.
doi: 10.1158/1078-0432.CCR-15-0426 pmid: 25896973 |
[5] |
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2017, 32(2):185-203,e13.
doi: S1535-6108(17)30299-4 pmid: 28810144 |
[6] |
Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer[J]. Nature, 2015, 518(7540):495-501.
doi: 10.1038/nature14169 URL |
[7] |
Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer[J]. Nature, 2016, 531(7592):47-52.
doi: 10.1038/nature16965 URL |
[8] |
Morton JP, Timpson P, Karim SA, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2010, 107(1):246-251.
doi: 10.1073/pnas.0908428107 URL |
[9] |
Oshima M, Okano K, Muraki S, et al. Immunohistoche-mically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer[J]. Ann Surg, 2013, 258(2):336-346.
doi: 10.1097/SLA.0b013e3182827a65 URL |
[10] |
Qian ZR, Rubinson DA, Nowak JA, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma[J]. JAMA Oncol, 2018, 4(3):e173420.
doi: 10.1001/jamaoncol.2017.3420 URL |
[11] |
沈璟, 高绥之, 王欢, 等. 四种驱动基因突变状态对根治性切除胰腺癌患者预后的评估价值[J]. 中华外科杂志, 2019, 57(11):840-847.
pmid: 31694133 |
Shen J, Gao SZ, Wang H, et al. Prognostic value of important driver gene mutations in patients with radical resection of pancreatic cancer[J]. Chin J Surg, 2019, 57(11):840-847.
doi: 10.3760/cma.j.issn.0529-5815.2019.11.009 pmid: 31694133 |
|
[12] |
Yachida S, White CM, Naito Y, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors[J]. Clin Cancer Res, 2012, 18(22):6339-6347.
doi: 10.1158/1078-0432.CCR-12-1215 pmid: 22991414 |
[13] |
Wen C, Deng X, Ren D, et al. Tumor copy number instability is a significant predictor for late recurrence after radical surgery of pancreatic ductal adenocarcinoma[J]. Cancer Med, 2020, 9(20):7626-7636.
doi: 10.1002/cam4.3425 URL |
[14] |
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science, 2008, 321(5897):1801-1806.
doi: 10.1126/science.1164368 pmid: 18772397 |
[15] |
Lewis R, Drebin JA, Callery MP, et al. A contemporary analysis of survival for resected pancreatic ductal adenocarcinoma[J]. HPB (Oxford), 2013, 15(1):49-60.
doi: 10.1111/j.1477-2574.2012.00571.x URL |
[16] |
Goldstein JB, Zhao L, Wang X, et al. Germline DNA sequencing reveals novel mutations predictive of overall survival in a cohort of patients with pancreatic cancer[J]. Clin Cancer Res, 2020, 26(6):1385-1394.
doi: 10.1158/1078-0432.CCR-19-0224 pmid: 31871297 |
[17] |
Tsai FD, Lopes MS, Zhou M, et al. K-Ras4A splice var-iant is widely expressed in cancer and uses a hybrid membrane-targeting motif[J]. Proc Natl Acad Sci U S A, 2015, 112(3):779-784.
doi: 10.1073/pnas.1412811112 URL |
[18] |
Hashimoto D, Arima K, Yokoyama N, et al. Heteroge-neity of KRAS Mutations in Pancreatic Ductal Adenocarci-noma[J]. Pancreas, 2016, 45(8):1111-1114.
doi: 10.1097/MPA.0000000000000624 URL |
[19] |
Brychta N, Krahn T, von Ahsen O. Detection of KRAS Mutations in Circulating Tumor DNA by Digital PCR in Early Stages of Pancreatic Cancer[J]. Clin Chem, 2016, 62(11):1482-1491.
pmid: 27591291 |
[20] |
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature, 2017, 546(7659):498-503.
doi: 10.1038/nature22341 URL |
[21] |
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade[J]. Hum Mutat, 2014, 35(6):672-688.
doi: 10.1002/humu.22552 pmid: 24665023 |
[22] |
Molina-Vila MA, Bertran-Alamillo J, Gascó A, et al. Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer[J]. Clin Cancer Res, 2014, 20(17):4647-4659.
doi: 10.1158/1078-0432.CCR-13-2391 pmid: 24696321 |
[23] |
Masetti M, Acquaviva G, Visani M, et al. Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4[J]. Cancer Biomark, 2018, 21(2):323-334.
doi: 10.3233/CBM-170464 pmid: 29103024 |
[24] |
Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis[J]. Proc Natl Acad Sci U S A, 2000, 97(17):9624-9629.
doi: 10.1073/pnas.97.17.9624 URL |
[25] |
Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms[J]. Cancer J, 2012, 18(6):492-501.
doi: 10.1097/PPO.0b013e31827459b6 pmid: 23187835 |
[1] | GU Xuan, LIU Jun. Ultrasound screening to identify solid pseudopapillary tumours of the pancreas from pancreatic ductal adenocarcinoma [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 504-508. |
[2] | LI Lei, YUAN Fei, WANG Chaofu, XU Haimin, WANG Ting. Ampullary adenocarcinoma: analysis of the clinicopathological features and prognostic factors [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 355-361. |
[3] | FENG Guowei, ZHANG Xiaojuan, GUO Rui, GUAN Zhe, WANG Yue. The prognostic value of pretreatment 18F-FDG PET/CT in extranodal natural killer/T-cell lymphoma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(06): 533-539. |
[4] | LIANG Yali, ZHAO Haigang, XIANG Guangyu. The stress-induced hyperglycemia ratio in the prognosis prediction of patients with acute ischemic stroke one year after thrombolytic therapy [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(06): 562-566. |
[5] | FENG Mingyang, DING Yezhou, ZHAO Qingqing, ZHAO Gangde, LOU Shike, ZHENG Chao, SUN Xuehua, LIU Kehui, LIN Lanyi, XIE Qing, ZHENG Lan, WANG HUI. Relation of TCM syndrome type in traditional Chinese medicine with liver failure staging in Western medicine in patients with liver failure [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(04): 391-395. |
[6] | RUI Wenbin, XU Da, ZHU Yu, WU Yuxuan, WANG Haofei, WANG Chenghe, YUAN Fei. Expression of HIF-1α and its relationship with prognosis in papillary renal cell carcinoma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(03): 265-370. |
[7] | YANG Yixian, NI Zhongxin, XIA Shujun, ZHOU Wei, ZHAN Weiwei. A comparison of clinicopathologic and ultrasonic features between unifocal and multifocal papillary thyroid carcinoma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 168-172. |
[8] | ZHANG Zhongwen, ZUO Xiangrong, ZHENG Xuhui, CAO Quan, Li Xinli, LI Yanxiu. Correlation between gene polymorphism of chromosome 3q26 rs12696304 and 1-year survival rate after acute heart failure in an elderly Han population in South China [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 565-571. |
[9] | XU Zhaoping, WANG Haofei. Expression of ZNF692 gene in clear cell renal cell carcinoma and its relationship with prognosis [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 292-296. |
[10] | DU Hailei, CHEN Ling, LUO Fangxiu, LI Yong, CHENG Qijian, ZHU Lianggang, HANG Junbiao. The prognostic value of Beclin-1 and Bcl-2 and its relationship with pathological characteristics in patients with non-small cell lung cancer [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 258-263. |
[11] | LUO Xiaoying, ZHU Xuemei, XU Yan, ZHANG Fengru, WU Liqun, QI Wenhang. Value of NT-proBNP level in predicting prognosis of hospitalized elderly pneumonia patients without heart failure history [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 319-322. |
[12] | LU Shuxiong, CHENG Kai, CAI Li, ZHOU Xiaodie, WANG Jianjun, WANG Xuan, SHI Qunli. Expression of SOX-2 in breast invasive carcinoma of no special type and its clinical and pathological significance [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 701-706. |
[13] | SONG Dandan, CHANG Chunkang, GUO Juan, XU Feng, ZHAO Youshan, WU Lingyun. The abnormal percentage of bone marrow macrophages and its clinical significances in myelodysplastic syndromes [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 439-443. |
[14] | JI Haifeng, YANG Xuelian, YAO Yulan, CAI Liying, LAI Xiaoyin, WU Dayu, XU Yumei, JIANG Mei. Validation of mSORE score for predicting poor outcome in acute ischemic stroke [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 423-427. |
[15] | WANG Ting, XIE Wen, LIN Xiaozhu, YUAN Fei, WANG Chaofu, GUO Yan. Intraductal papillary mucinous neoplasm with an associated invasive carcinoma of the pancreas: analysis of the clinicopathologic features and prognosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(03): 278-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||