Journal of Diagnostics Concepts & Practice ›› 2025, Vol. 24 ›› Issue (03): 301-311.doi: 10.16150/j.1671-2870.2025.03.009
• Original article • Previous Articles Next Articles
DU Yajie, WANG Mingfei, LIN Maosong()
Received:
2025-01-03
Accepted:
2025-03-25
Online:
2025-06-25
Published:
2025-06-25
Contact:
LIN Maosong
E-mail:lms0605@163.com
CLC Number:
DU Yajie, WANG Mingfei, LIN Maosong. KIAA1429 inhibits colorectal cancer tumor immunity by regulating PD-L1 and CD8+ T cell[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(03): 301-311.
Table 1
Sequence of siRNA
Primer | Sense (5’ to 3’) | Antisence (5’ to 3’) |
---|---|---|
siKIAA1429-1 | CCCAACGAUGGCACGAAUUACdTdT | GTAAUUCGUGCCAUCGUUGGGdTdT |
siKIAA1429-2 | CGCUGAGCAAAGUUCUCAUAUdTdT | AUAUGAGAACUUUGCUCAGCGdTdT |
siKIAA1429-3 | UACGCUCCUUUACACGAUAAAdTdT | UUUAUCGUGUAAAGGAGCGUAdTdT |
si-NC | AUGAGAUAAGCUUAAGAUCGCdTdT | GCGAUCUUAAGCUUAUCUCAUdTdT |
Figure 1
High expression of KIAA1429 is associated with poor prognosis in CRC A: Elevated mRNA expression of KIAA1429 in CRC;B: High expression of KIAA1429 correlates with poor prognosis; C: Expression of KIAA1429 in CRC tissue and adjacent non-cancerous tissue (magnification 200×): (a) High expression of KIAA1429 in CRC tissue,(b) Low expression of KIAA1429 in CRC tissue,(c) High expression of KIAA1429 in adjacent non-cancerous tissue,(d) Low expression of KIAA1429 in adjacent non-cancerous tissue; D: Differential expression of KIAA1429 between CRC tissue and adjacent non-cancerous tissue.
Figure 2
KIAA1429 is associated with PD-L1 expression and CD8+ T cell infiltration in CRC A: KIAA1429 shows a positive correlation with PD-L1 expression;B: The expression level of KIAA1429 is negatively correlated with the infiltration level of CD8+ T cells;C: PD-L1 mRNA contains m6A binding sites.
Figure 4
KIAA1429 in CRC tissue shows correlations with CD3+ T cell and CD8+ T cell infiltration A: Expression of CD3+ T cells in CRC (magnification 200×),High infiltration of CD3+ T cells in cancer tissue (top left),low infiltration (top right); High infiltration of CD3+ T cells in adjacent non-cancerous tissue (bottom left),low infiltration (bottom right). B: Expression of CD8+ T cells in CRC (magnification 200×),High infiltration of CD8+ T cells in cancer tissue (top left),low infiltration (top right); High infiltration of CD8+ T cells in adjacent non-cancerous tissue (bottom left),low infiltration (bottom right).
Figure 6
Impact of KIAA1429 knockdown on PD-L1 gene and protein expression in CRC cells A: Expression levels of KIAA1429 mRNA in various colorectal cancer cell lines;B: siKIAA1429-1,siKIAA1429-2,and siKIAA1429-3 all successfully silence KIAA1429,with siKIAA1429-2 showing the most effective silencing;C: Downregulation of PD-L1 mRNA expression following KIAA1429 silencing in SW620 cells;D: Downregulation of PD-L1 protein expression following KIAA1429 silencing in SW620 cells;E: Western blot analysis of PD-L1 protein expression.**:P<0.01;***:P<0.001;ns:P>0.05.
Figure 7
Effect of knockdown of KIAA1429 in CRC homograft tumor-bearing mice on tumor growth A: Homograft tumor mouse model was constructed in the axilla of C57BL/6 mice; B: Tumor volume growth curves of the two groups of mice,and the tumors in the siKIAA1429 group grew more slowly than those in the siNC group; C: Tumor weight analysis of the two groups of mice,and the average weight of the tumors in the siKIAA1429 group was less than that in the siNC group.
[1] | FILHO A M, LAVERSANNE M, FERLAY J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer,2025, 156(7):1336-1346. |
[2] | 肖毅, 李珂璇. 多中心直肠癌真实世界数据库建设与数据质量控制策略[J]. 中华消化外科杂志 2025, 24(1): 77-81. |
XIAO Y, LI K X. Multicenter rectal cancer real-world database construction and data quality control strategies[J]. Chin J Dig Surg, 2025, 24(1):77-81. | |
[3] | 李珂璇, 肖体先, 汪晓东, 等. 中低位直肠癌初诊及新辅助治疗后评估完成度分析:全国多中心真实世界研究[J]. 中华消化外科杂志, 2025, 24(1):113-119. |
LI K X, XIAO T X, WANG X D, et al. Analysis of completion rate of tumor evaluation at initial assessment and after neoa-djuvant therapy for mid and low rectal cancer : a national multicenter real world study[J]. Chin J Dig Surg, 2025, 24(1):113-119. | |
[4] | 中华医学会外科学分会腹腔镜与内镜外科学组, 中华医学会外科学分会结直肠外科学组, 中国医师协会外科医师分会结直肠外科专家工作组, 等. 腹腔镜结直肠癌根治术操作指南(2023版)[J]. 中华消化外科杂志, 2024, 23(1):10-22. |
Laparoscopic & Endoscopic Surgery Group, Branch of Surgery, Chinese Medical Association, Colorectal Surgery Group, Branch of Surgery, Chinese Medical Association, Chinese Society of Colon and Rectal Surgeons, Chinese Medical Doctor Association, et al. Guideline for operative procedure of laparoscopic radical surgery for colorectal cancer (2023 edition)[J]. Chin J Dig Surg, 2024, 23(1): 10-22. | |
[5] | MORGAN E, ARNOLD M, GINI A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and morta-lity estimates from GLOBOCAN[J]. Gut, 2023, 72(2): 338-344. |
[6] |
LAZAROFF J, BOLOTIN D. Targeted therapy and immunotherapy in melanoma[J]. Dermatol Clin, 2023, 41(1):65-77.
doi: 10.1016/j.det.2022.07.007 pmid: 36410984 |
[7] | DANTOING E, PITON N, SALAÜN M, et al. Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations[J]. Int J Mol Sci, 2021, 22(12):6288. |
[8] |
JIN M, FANG J, PENG J, et al. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies[J]. Mol Cancer, 2024, 23(1):266.
doi: 10.1186/s12943-024-02176-8 pmid: 39614285 |
[9] |
MARCUS L, LEMERY S J, KEEGAN P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758.
doi: 10.1158/1078-0432.CCR-18-4070 pmid: 30787022 |
[10] |
DIAZ L A JR, SHIU K K, KIM T W, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5):659-670.
doi: 10.1016/S1470-2045(22)00197-8 pmid: 35427471 |
[11] | SUN T, WU R, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019,112:108613. |
[12] | JIANG X, LIU B, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1):74. |
[13] | SHRIWAS O, MOHAPATRA P, MOHANTY S, et al. The impact of m6A RNA modification in therapy resistance of cancer: implication in chemotherapy, radiotherapy, and immunotherapy[J]. Front Oncol, 2021,10:612337. |
[14] | ZHANG Z, ZHANG C, LUO Y, et al. m6A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer[J]. BMC Med, 2021, 19(1):284. |
[15] | ZHANG X, LI M J, XIA L, et al. The biological function of m6A methyltransferase KIAA1429 and its role in human disease[J]. PeerJ, 2022,10:e14334. |
[16] | TANG Z, KANG B, LI C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Res, 2019, 47(W1):W556-W560. |
[17] | LI T, FU J, ZENG Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1):W509-W514. |
[18] |
CERAMI E, GAO J, DOGRUSOZ U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 pmid: 22588877 |
[19] | ZHOU Y, ZENG P, LI Y H, et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features[J]. Nucleic Acids Res, 2016, 44(10):e91. |
[20] | RASKOV H, ORHAN A, CHRISTENSEN J P, et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy[J]. Br J Cancer, 2021, 124(2):359-367. |
[21] | DI PILATO M, GAO Y, SUN Y, et al. Translational studies using the MALT1 Inhibitor (S)-mepazine to induce treg fragility and potentiate immune checkpoint therapy in cancer[J]. J Immunother Precis Oncol, 2023, 6(2):61-73. |
[22] | ZHOU Y, PEI Z, MAIMAITI A, et al. m6A methyltransfe-rase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m6A-dependent manner[J]. Cell Death Discov, 2022, 8(1):83. |
[23] | AI Y, LIU S, LUO H, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1[J]. J Immunol Res, 2021,2021:6149558. |
[24] | LIU Z, WANG T, SHE Y, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubi-quitination of PD-L1 in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1):105. |
[25] | MA L, LIN Y, SUN S W, et al. KIAA1429 is a potential prognostic marker in colorectal cancer by promoting the proliferation via downregulating WEE1 expression in an m6A-independent manner[J]. Oncogene, 2022, 41(5):692-703. |
[26] | QIAN J Y, GAO J, SUN X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019, 38(33):6123-6141. |
[27] | WAN W, AO X, CHEN Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer[J]. Mol Cancer, 2022, 21(1):60. |
[28] | HU Y, ZHAO J, SHEN Y, et al. Predictive value of tumor-infiltrating lymphocytes detected by flow cytometry in colorectal cancer[J]. Int Immunopharmacol, 2022, 113(Pt A):109286. |
[29] | MALKA D, LIÈVRE A, ANDRÉ T, et al. Immune scores in colorectal cancer: Where are we?[J] Eur J Cancer, 2020,140:105-118. |
[30] | KARJULA T, ELOMAA H, NISKAKANGAS A, et al. CD3+ and CD8+ T-cell-based immune cell score and PD-(L)1 expression in pulmonary metastases of microsatellite stable colorectal cancer[J]. Cancers (Basel), 2022, 15(1):206. |
[31] | DOMINGO E, KELLY C, HAY J, et al. Prognostic and predictive value of immunoscore in stage Ⅲ colorectal cancer: pooled analysis of cases from the SCOT and IDEA-HORG studies[J]. J Clin Oncol, 2024, 42(18):2207-2218. |
[32] | HUANG Y, XIA W, DONG Z, et al. Chemical inhibitors targeting the oncogenic m6A modifying proteins[J]. Acc Chem Res, 2023, 56(21):3010-3022. |
[33] | CHEN H, PAN Y, ZHOU Q, et al. METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer[J]. Gastroentero-logy, 2022, 163(4):891-907. |
[1] | AN Huihui, WU Tao, LIU Wenhui, TIAN Sirui. A Mendelian randomized study on the correlation between 91 inflammatory protein levels and the risk of acute myeloid leukemia [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(05): 509-516. |
[2] | QIN Xiaodan, SUN Huiling, PAN Bei, PAN Yuqin, WANG Shukui. miR-1229-3p inhibits the malignant progression of colorectal cancer and serves as a potential biomarker [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 429-440. |
[3] | WANG Han, LU Haidi, WANG Lei, CONG Wenming, ZHENG Jianming, BAI Chenguang. Clinicopathological features of 2 cases of squamous cell carcinoma and 2 cases of adenosquamous carcinoma [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 44-49. |
[4] | LI Jiaxi, WANG Jinjiang, YU Liping, YUAN Ying, QIAO Guanglei, MA Lijun. Effect of RAB25 knockdown on ferroptosis of colorectal cancer cells [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(06): 710-718. |
[5] | YANG Ruixin, DU Yutong, YAN Ranlin, ZHU Zhenggang, LI Chen, YU Yingyan. Improving exploration of biological sample pretreatment in single-cell transcriptome sequencing of gastrointestinal tumors [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 567-574. |
[6] | ZHANG Hua, LU Wei, YANG Chengyi, XIANG Mingjie. Value of serum FBLN1 detection in diagnosis and prognosis prediction of colorectal cancer [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(05): 462-465. |
[7] | XU Chenying, XU Qingling, TANG Chenyue, YU Lifen. Detection rate of colorectal adenoma in the asymptomatic population of 40 to 59 years and its relationship with the detected gastric polyps in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(05): 504-509. |
[8] | WANG Ziyuan, LIANG Tingyu, CHEN Jia, HAN Zhihong, WU Lili. Analysis of KRAS, NRAS and BRAF mutations in colorectal cancer and their correlation with clinicopathologic features and p53 protein expression [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 687-693. |
[9] | CHEN Ying, HE Lili, JIANG Feng. Expression of long non-coding RNA FENDRR in human colorectal cancer and its correlation with prognosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 87-91. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(04): 377-382. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(04): 388-392. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 316-320. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(04): 325-328. |
[14] | . [J]. Journal of Diagnostics Concepts & Practice, 2009, 8(04): 424-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||