| [1] |
王嘉琛, 何思怡, 曹梦迪, 等. 1990—2021年中国人群5种常见消化系统恶性肿瘤疾病负担变化趋势分析[J]. 中华消化外科杂志, 2025, 24(2):213-222.
|
|
WANG J C, HE S Y, CAO M D, et al. Analysis of the change trend in the burden of 5 common malignant tumors of digestive system in the Chinese population from 1990 to 2021[J]. Chin J Dig Surg, 2025, 24(2):213-222.
|
| [2] |
程琳, 余永强, 王成林, 等. 胰胆管汇合MRCP解剖与胰胆系疾病关系[J]. 中国CT和MRI杂志, 2012, 10(1):50-53.
|
|
CHENG L, YU Y Q, WANG C L, et al. MRCP study of pancreaticobiliary maljunction and pancreaticobiliary di-seases[J]. Chin J CT MRI, 2012, 10(1): 50-53.
|
| [3] |
CAI L, YEH B M, WESTPHALEN A C, et al. 3D T2-weighted and Gd-EOB-DTPA-enhanced 3D T1-weighted MR cholangiography for evaluation of biliary anatomy in living liver donors[J]. Abdom Radiol (NY), 2017, 42(3):842-850.
doi: 10.1007/s00261-016-0936-z
pmid: 27714420
|
| [4] |
SANDINO C M, CHENG J Y, CHEN F, et al. Compressed sensing: from research to clinical practice with deep neural networks[J]. IEEE Signal Process Mag, 2020, 37(1):111-127.
|
| [5] |
SHENG R F, ZHENG L Y, JIN K P, et al. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: A clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI[J]. Magn Reson Imaging, 2021, 81:75-81.
doi: 10.1016/j.mri.2021.06.014
URL
|
| [6] |
CHANDRA S S, BRAN LORENZANA M, LIU X, et al. Deep learning in magnetic resonance image reconstruction[J]. J Med Imaging Radiat Oncol, 2021, 65(5):564-577.
doi: 10.1111/ara.v65.5
URL
|
| [7] |
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep Lear-ning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging[J]. Radiology, 2022, 303(2):373-381.
doi: 10.1148/radiol.204097
URL
|
| [8] |
TAJIMA T, AKAI H, SUGAWARA H, et al. Feasibility of accelerated whole-body diffusion-weighted imaging using a deep learning-based noise-reduction technique in patients with prostate cancer[J]. Magn Reson Imaging, 2022, 92:169-179.
doi: 10.1016/j.mri.2022.06.014
URL
|
| [9] |
JOHNSON P M, LIN D J, ZBONTAR J, et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI[J]. Radiology, 2023, 307(2):e220425.
|
| [10] |
ALMANSOUR H, HERRMANN J, GASSENMAIER S, et al. Deep learning reconstruction for accelerated spine MRI: Prospective analysis of interchangeability[J]. Radio-logy, 2023, 306(3):e212922.
|
| [11] |
MALKIEL I, AHN S, SLAVENS Z, et al. Densely connected iterative network for sparse MRI reconstruction[C]. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Annual Meeting, 2017.
|
| [12] |
徐卓凡, 靳琪奥, 王开宇, 等. 基于CT检查的集成深度学习模型对肝门静脉定性与定量分型研究[J]. 中华消化外科杂志, 2024, 23(7):976-983.
|
|
XU Z F, JIN Q A, WANG K Y, et al. CT-based integrated deep learning model for qualitative and quantitative research of hepatic portal vein[J]. Chin J Dig Surg, 2024, 23(7):976-983.
|
| [13] |
陶海粟, 黎柏宏, 曾小军, 等. 基于深度学习构建微创肝切除术关键解剖结构识别模型的应用价值[J]. 中华消化外科杂志, 2024, 23(4):590-595.
|
|
TAO H S, LI B H, ZENG X J, et al. Application value of major anatomical structure recognition model of minimally invasive liver resection based on deep learning[J]. Chin J Dig Surg, 2024, 23(4):590-595.
|
| [14] |
KROMREY M L, FUNAYAMA S, TAMADA D, et al. Clinical evaluation of respiratory-triggered 3D MRCP with navigator echoes compared to breath-hold acquisition using compressed sensing and/or parallel imaging[J]. Magn Reson Med Sci, 2020, 19(4):318-323.
doi: 10.2463/mrms.mp-2019-0122
URL
|
| [15] |
张小斌, 李宁, 陈亚明. MRCP 诊断不同直径、不同部位胆总管结石的价值[J]. 中国 CT 和 MRI 杂志, 2023, 21(4):110-111.
|
|
ZHANG X B, LI N, CHEN Y M. The value of MRCP in the diagnosis of common bile duct stones of different diameters and locations[J]. Chin J CT MRI, 2023, 21(4):110-111.
|
| [16] |
王淳正, 许来艳, 侯莉莉. EUS检查与MRCP成像对IPMN良恶性鉴别诊断效能对比[J]. 中国CT和MRI杂志, 2022, 20(5):139-141.
|
|
WANG C Z, XU L Y, HOU L L. Comparison on efficiency between EUS and MRCP imaging in the differential diagnosis of benign and malignant IPMN[J]. Chin J CT MRI, 2022, 20(5):139-141.
|
| [17] |
孟菲, 于霞. 3D MRCP及MIP图像与轴位T2WI结合诊断胆系结石的价值[J]. 武警医学, 2015, 26(7):656-658.
|
|
MENG F, YU X. Diagnostic value of combining 3D MRCP/MIP images with axial T2-weighted imaging for biliary calculi[J]. Med J Chin PAPF, 2015, 26(7):656-658.
|
| [18] |
宋斌, 赵厚亮, 叶莉. 三维磁共振胰胆管成像诊断小儿胆道闭锁价值分析[J]. 实用肝脏病杂志, 2021, 24(2):288-291.
|
|
SONG B, ZHAO H L, YE L. Application of three-dimensional magnetic resonance cholangiopancreatography in diagnosis of biliary atresia in children[J]. J Prac Hepatol, 2021, 24(2): 288-291.
|
| [19] |
王宏光, 罗漫. 肝门部胆管癌的术前评估和术中导航研究进展[J]. 中华消化外科杂志,2024,23(7):906-911.
|
|
WANG HG, LUO M. Research advance in preoperative evaluation and intraoperative navigation for hilar cholangio-carcinoma[J]. Chin J Dig Surg,2024,23(7):906-911.
|
| [20] |
MALKIEL I, AHN S, SLAVENS Z, TAVIANI V, HARDY C J. Densely connected iterative network for sparse MRI reconstruction[C]. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Annual Meeting, 2017.
|
| [21] |
GAO HUANG, ZHUANG LIU, LAURENS V D M, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,2017: 2261-2269.
|
| [22] |
AGGARWAL H K, MANI M P, JACOB M. MoDL: Model-based deep learning architecture for inverse problems[J]. IEEE Trans Med Imaging, 2019, 38(2):394-405.
doi: 10.1109/TMI.2018.2865356
URL
|
| [23] |
AHN S, MENINI A, MCKINNON G, et al. Contrast-weighted SSIM loss function for deep learning-based undersampled MRI reconstruction[C]. (ISMRM) Annual Meeting, 2020.
|
| [24] |
王璇, 王皓, 万云天, 等. 肩关节加速MRI应用深度学习重建算法的可行性与临床价值[J]. 中国临床研究, 2024, 37(8):1238-1243.
|
|
WANG X, WANG H, WAN YT, et al. Feasibility and clinical value of deep learning reconstruction in accele-rated MRI of shoulder[J]. Chin J Clin Res, 2024, 37(8):1238-1243.
|