Journal of Diagnostics Concepts & Practice ›› 2024, Vol. 23 ›› Issue (06): 561-567.doi: 10.16150/j.1671-2870.2024.06.001
Received:
2024-02-02
Online:
2024-12-25
Published:
2024-12-25
Contact:
SUN Liangdan
E-mail:liangds@ncst.edu.cn
CLC Number:
CHEN Weiwei, SUN Liangdan. Research progress in genetic epidemiology of psoriasis in Chinese population[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(06): 561-567.
[1] | 中华医学会皮肤性病学分会银屑病专业委员会. 中国银屑病诊疗指南(2023版)[J]. 中华皮肤科杂志, 2023, 56(07): 573-625. |
Committee on Psoriasis, Chinese Society of Dermatology. Guideline for the diagnosis and treatment of psoriasis in China (2023 edition)[J]. Chin J Dermatol, 2023, 56(7): 573-625. | |
[2] |
ZHANG X, WANG H, TE-SHAO H, et al. The genetic epidemiology of psoriasis vulgaris in Chinese Han[J]. Int J Dermatol, 2002, 41(10):663-669.
doi: 10.1046/j.1365-4362.2002.01596.x pmid: 12390189 |
[3] | 冯小燕, 徐丽敏. 寻常型银屑病遗传流行病学分析[J]. 中国城乡企业卫生, 2019, 34(3):4-6. |
FENG X Y, XV L M. Genetic epidemiological analysis of psoriasis vulgaris[J]. Chin J Urban Rural Enterprise Hyg, 2019, 34(3):4-6. | |
[4] | ZHANG X J, YAN K L, WANG Z M, et al. Polymorphisms in interleukin-15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population[J]. J Invest Dermatol, 2007, 127(11):2544-2551. |
[5] | ŻYŻYŃSKA-GRANICA B, TRZASKOWSKI B, NIEWIECZERZAŁ S, et al. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors[J]. Eur J Med Chem, 2017, 136:543-547. |
[6] |
STRANGER B E, STAHL E A, RAJ T. Progress and promise of genome-wide association studies for human complex trait genetics[J]. Genetics, 2011, 187(2):367-383.
doi: 10.1534/genetics.110.120907 pmid: 21115973 |
[7] | 张学军. 全基因组关联分析对银屑病遗传学研究的启示[J]. 浙江大学学报(医学版), 2009, 38(4):333-337. |
ZHANG X J. Enlightenment from genome-wide association study to genetics of psoriasis[J]. J Zhejiang Univ (Med Sci), 2009, 38(4):333-337. | |
[8] | ZHANG X J, HUANG W, YANG S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J]. Nat Genet, 2009, 41(2):205-210. |
[9] | SUN L D, CHENG H, WANG Z X, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population[J]. Nat Genet, 2010, 42(11):1005-1009. |
[10] | SUN L, CAO Y, HE N, et al. Association between LCE gene polymorphisms and psoriasis vulgaris among Mongolians from Inner Mongolia[J]. Arch Dermatol Res, 2018, 310(4):321-327. |
[11] |
YIN X, LOW H Q, WANG L, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility[J]. Nat Commun, 2015, 6:6916.
doi: 10.1038/ncomms7916 pmid: 25903422 |
[12] | CHEN W, WANG W, YONG L, et al. Genome-wide meta-analysis identifies ten new psoriasis susceptibility loci in the Chinese population[J]. J Genet Genomics, 2022, 49(2):177-180. |
[13] |
TANG H, JIN X, LI Y, et al. A large-scale screen for coding variants predisposing to psoriasis[J]. Nat Genet, 2014, 46(1):45-50.
doi: 10.1038/ng.2827 pmid: 24212883 |
[14] |
ZUO X, SUN L, YIN X, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis[J]. Nat Commun, 2015, 6:6793.
doi: 10.1038/ncomms7793 pmid: 25854761 |
[15] |
ZHEN Q, YANG Z, WANG W, et al. Genetic study on small insertions and deletions in psoriasis reveals a role in complex human diseases[J]. J Invest Dermatol, 2019, 139(11):2302-2312.e14.
doi: S0022-202X(19)31551-9 pmid: 31078570 |
[16] | ZHANG C, QIN Q, LI Y, et al. Multifactor dimensionality reduction reveals the effect of interaction between ERAP1 and IFIH1 polymorphisms in psoriasis susceptibility genes[J]. Front Genet, 2022, 13:1009589. |
[17] |
XU H, ZHEN Q, BAI M, et al. Deep sequencing of 1320 genes reveals the landscape of protein-truncating variants and their contribution to psoriasis in 19,973 Chinese individuals[J]. Genome Res, 2021, 31(7):1150-1158.
doi: 10.1101/gr.267963.120 pmid: 34155038 |
[18] | ZHEN Q, ZHANG Y, YU Y, et al. Three novel structural variations at the major histocompatibility complex and IL12B predispose to psoriasis[J]. Br J Dermatol, 2022, 186(2):307-317. |
[19] |
ZHOU F, CAO H, ZUO X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7):740-746.
doi: 10.1038/ng.3576 pmid: 27213287 |
[20] | LIU M, ZHANG G, WANG Z, et al. FOXE1 contributes to the development of psoriasis by regulating WNT5A[J]. J Invest Dermatol, 2023, 143(12):2366-2377.e7. |
[21] | GAO Y, NA M, YAO X, et al. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis[J]. Front Immunol, 2023, 14:1265517. |
[22] |
TANG L, WANG M, SHEN C, et al. Assay for transposase-accessible chromatin using sequencing analysis reveals a widespread increase in chromatin accessibility in psoriasis[J]. J Invest Dermatol, 2021, 141(7):1745-1753.
doi: 10.1016/j.jid.2020.12.031 pmid: 33607116 |
[23] |
TSOI L C, SPAIN S L, KNIGHT J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet, 2012, 44(12):1341-1348.
doi: 10.1038/ng.2467 pmid: 23143594 |
[24] | FURUE M, FURUE K, TSUJI G, et al. Interleukin-17A and keratinocytes in psoriasis[J]. Int J Mol Sci, 2020, 21(4):1275. |
[25] |
GRIFFITHS C E M, ARMSTRONG A W, GUDJONSSON J E, et al. Psoriasis[J]. Lancet, 2021, 397(10281):1301-1315.
doi: 10.1016/S0140-6736(20)32549-6 pmid: 33812489 |
[26] |
YAO Y, VENT-SCHMIDT J, MCGEOUGH M D, et al. Tr1 cells, but not Foxp3+ regulatory t cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism[J]. J Immunol, 2015, 195(2):488-497.
doi: 10.4049/jimmunol.1403225 pmid: 26056255 |
[27] | PAN Y, YOU Y, SUN L, et al. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation[J]. Br J Pharmacol, 2021, 178(24):4907-4922. |
[28] | MAO Y, GE H, CHEN W, et al. RasGRP1 influences imiquimod-induced psoriatic inflammation via T-cell activation in mice[J]. Int Immunopharmacol, 2023, 122:110590. |
[29] | GUO M, ZHUANG H, SU Y, et al. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages[J]. Front Immunol, 2023, 14:1128543. |
[30] | YU Y, CHEN W, LI B, et al. Cutaneous calcium/calmodulin-dependent protein kinase II-γ-positive sympathetic nerves secreting norepinephrine dictate psoriasis[J]. Adv Sci (Weinh), 2024, 11(23):e2306772. |
[31] | YONG L, YU Y, LI B, et al. Calcium/calmodulin-dependent protein kinase Ⅳ promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice[J]. Nat Commun, 2022, 13(1):4255. |
[32] |
XU J, LIU M, YU M, et al. RasGRP1 is a target for VEGF to induce angiogenesis and involved in the endothelial-protective effects of metformin under high glucose in HUVECs[J]. IUBMB Life, 2019, 71(9):1391-1400.
doi: 10.1002/iub.2072 pmid: 31120617 |
[33] | DOPYTALSKA K, CIECHANOWICZ P, WISZNIEWSKI K, et al. The role of epigenetic factors in psoriasis[J]. Int J Mol Sci, 2021, 22(17):9294. |
[34] |
FOGEL O, RICHARD-MICELI C, TOST J. Epigenetic changes in chronic inflammatory diseases[J]. Adv Protein Chem Struct Biol, 2017, 106:139-189.
doi: S1876-1623(16)30053-0 pmid: 28057210 |
[35] | MOUNSEY S J, KULAKOV E. Psoriasis[J]. Br J Hosp Med (Lond), 2018, 79(8):C114-C117. |
[36] |
CHEN M, WANG Y, YAO X, et al. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis[J]. J Dermatol Sci, 2016, 83(1):10-16.
doi: 10.1016/j.jdermsci.2016.04.003 pmid: 27132688 |
[37] |
ZHANG P, SU Y, CHEN H, et al. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris[J]. J Dermatol Sci, 2010, 60(1):40-42.
doi: 10.1016/j.jdermsci.2010.07.011 pmid: 20800455 |
[38] |
ZHANG P, ZHAO M, LIANG G, et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris[J]. J Autoimmun, 2013, 41:17-24.
doi: 10.1016/j.jaut.2013.01.001 pmid: 23369618 |
[39] |
ZONG W, GE Y, HAN Y, et al. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis[J]. Oncotarget, 2017, 8(7):12323-12332.
doi: 10.18632/oncotarget.12468 pmid: 27713139 |
[40] |
QIAO M, LI R, ZHAO X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7[J]. Exp Cell Res, 2018, 363(2):243-254.
doi: S0014-4827(18)30024-7 pmid: 29339075 |
[41] | 景志杰, 付明阳, 王春芳. 过表达miR-31及其下游靶基因Sfn、SuFu在银屑病动物模型中的作用[J]. 重庆医科大学学报, 2024, 49(11):1394-1401. |
JING Z J, FU M Y, WANG C F. Role of overexpression of microRNA-31 and its downstream target genesSfn and SuFu in animal models of psoriasis[J]. J Chongqing Med Univ, 2024, 49(11):1394-1401. | |
[42] | FENG H, WU R, ZHANG S, et al. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice[J]. J Dermatol, 2020, 47(2):147-154. |
[43] |
WU R, ZENG J, YUAN J, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation[J]. J Clin Invest, 2018, 128(6):2551-2568.
doi: 10.1172/JCI97426 pmid: 29757188 |
[44] |
YAN J J, QIAO M, LI R H, et al. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis[J]. Br J Dermatol, 2019, 180(2):365-372.
doi: 10.1111/bjd.17256 pmid: 30269330 |
[45] | CHEN Y, XIANG Y, MIAO X, et al. METTL14 promotes IL-6-induced viability, glycolysis and inflammation in HaCaT cells via the m6A modification of TRIM27[J]. J Cell Mol Med, 2024, 28(3):e18085. |
[46] | XIAO Z, WANG S, TIAN Y, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7):112684. |
[47] | WANG Y, HUANG J, JIN H. Reduction of Methyltransferase-like 3-mediated RNA N6-methyladenosine exacerbates the development of psoriasis vulgaris in imiquimod-induced psoriasis-like mouse model[J]. Int J Mol Sci, 2022, 23(20):12672. |
[48] |
LIU L, JU M, HU Y, et al. Genome-wide DNA methylation and transcription analysis in psoriatic epidermis[J]. Epigenomics, 2023, 15(4):209-226.
doi: 10.2217/epi-2022-0458 pmid: 37158398 |
[49] | ZHOU F, WANG W, SHEN C, et al. Epigenome-wide association analysis identified nine skin dna methylation loci for psoriasis[J]. J Invest Dermatol, 2016, 136(4):779-787. |
[50] | ZHANG P, SU Y, ZHAO M, et al. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris[J]. Eur J Dermatol, 2011, 21(4):552-557. |
[51] | 张成, 梁波, 张莉, 等. 儿童玫瑰糠疹和寻常型银屑病皮肤镜特征分析[J]. 安徽医学, 2024, 45(05):570-573. |
ZHANG C, LIANG B, ZHANG L, et al. Analysis of dermatoscopic features of children with pityriasis rosea and psoriasis vulgaris[J]. Anhui Med J, 2024, 45(5):570-573. | |
[50] | 章鹏飞, 张正勇. 司库奇尤单抗及308 nm准分子光治疗中重度斑块型银屑病的短期疗效对比[J]. 安徽医学, 2023, 44(11):1319-1322. |
ZHANG PF, ZHANG ZY. Comparison of Short term Efficacy of Sikuximab and 308 nm Excimer Phototherapy for Moderate to Severe Plaque Psoriasis[J]. Anhui Med J, 2023, 44(11):1319-1322. |
[1] | WANG Gang, QI Jinlei, LIU Xinya, REN Rujing, LIN Shaohui, HU Yisong, LI Haixia, XIE Xinyi, WANG Jintao, LI Jianping, ZHU Yikang, GAO Mengyi, YANG Junjie, WANG Yiran, JING Yurong, GENG Jieli, ZHI Nan, CAO Wenwei, XU Qun, YU Xiaoping, ZHU Yuan, ZHOU Ying, WANG Lin, GAO Chao, LI Binyin, CHEN Shengdi, YUAN Fang, DOU Ronghua, LIU Xiaoyun, LI Xuena, YIN Yafu, CHANG Yan, XU Gang, XIN Jiawei, ZHONG Yanting, LI Chunbo, WANG Ying, ZHOU Maigeng, CHEN Xiaochun, representing the China Alzheimer's Disease Report Writing Group . China Alzheimer Report 2024 [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 219-256. |
[2] | HUANG Rui, RAO Huiying. Current status, screening and diagnostic strategies for hepatitis C virus infection in the context of “elimination” [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(01): 1-8. |
[3] | SHI Yuling, CHEN Wenjuan. Psoriasis comorbidity: prevalence, diagnosis and treatment [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 221-229. |
[4] | WANG Zezhou, ZHENG Ying. Lung cancer worldwide and in China from 1990 to 2020: prevalence and prevention measures [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 1-7. |
[5] | LIANG Chen, YU Jiajia, TANG Shenjie. Interpretation of the Global Tuberculosis Report 2022 by World Health Organization [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 21-30. |
[6] | BAO Pingping, WU Chunxiao, GU Kai, PANG Yi, WANG Chunfang, SHI Liang, XIANG Yongmei, GONG Yangming, DOU Jianming, WU Mengyin, FU Chen, SHI Yan. Analysis on incidence of stomach cancer in 2016 and trend of incidence during 2002-2016 in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 462-469. |
[7] | WANG Juan, LI Jia. Epidemiological analysis of human papilloma virus infection in male patients with condyloma acuminatum during 2017-2018 in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 572-576. |
[8] | LIU Shanshan, Niu Jingya, WANG Tiange, LI Mian, ZHAO Zhiyun, XU Yu, LU Jieli, XU Min, BI Yufang, ZHANG Di. Epidemiological investigation on cardiometabolic abnormalities in Songnan Community residents with type 2 diabetes [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 323-328. |
[9] | LIN Zhen, GUO Ruru, LÜ Liangjing, CHEN Xiaoxiang. Study on the involving of Fra2 via regulating IL23 receptor in the pathogenesis of psoriasis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(03): 254-259. |
[10] | BAO Pingping, WU Chunxiao, ZHANG Minlu, GU Kai, XIANG Yongmei, PENG Peng, GONG Yangming, SHI Liang, ZOU Zhen.. Epidemiological features of major subtypes of leukemia and its incidence trends in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 484-491. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(04): 410-414. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(01): 24-27. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(02): 111-115. |
[14] | . [J]. Journal of Diagnostics Concepts & Practice, 2010, 9(01): 35-41. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2009, 8(06): 639-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||