Journal of Diagnostics Concepts & Practice ›› 2023, Vol. 22 ›› Issue (01): 21-30.doi: 10.16150/j.1671-2870.2023.01.004
• Academic trend at home and abroad • Previous Articles Next Articles
LIANG Chen, YU Jiajia, TANG Shenjie()
Received:
2023-03-06
Online:
2023-02-25
Published:
2023-07-06
Contact:
TANG Shenjie
E-mail:tangsj1106@vip.sina.com
CLC Number:
LIANG Chen, YU Jiajia, TANG Shenjie. Interpretation of the Global Tuberculosis Report 2022 by World Health Organization[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 21-30.
国家 | 估算发病率/100 000 (95% CI) | 估算发病人数 (×1 000 000) (95% CI) | 全球 份额 |
---|---|---|---|
印度 | 210(178~244) | 3(2.500~3.400) | 28.0% |
印度尼西亚 | 354(318~391) | 0.969(0.872~1.100) | 9.2% |
中国 | 55(47~63) | 0.780(0.665~0.905) | 7.4% |
菲律宾 | 650(352~1 000) | 0.741(0.401~1.200) | 7.0% |
巴基斯坦 | 264(192~347) | 0.611(0.445~0.803) | 5.8% |
尼日利亚 | 219(143~311) | 0.476(0.305~0.664) | 4.4% |
孟加拉国 | 221(161~291) | 0.375(0.273~0.493) | 3.6% |
刚果 | 370(231~542) | 0.022(0.013~0.032) | 2.9% |
[1] | World Health Organization. Global tuberculosis report 2022[R/OL]. Geneva: World Health Organization, 2022. https://www.who.int/teams/global-tuberculosis-programme/TB-reports/global-tuberculosis-report-2022. |
[2] |
DHEDA K, PERUMAL T, MOULTRIE H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions[J]. Lancet Respir Med, 2022, 10(6):603-622.
doi: 10.1016/S2213-2600(22)00092-3 pmid: 35338841 |
[3] | World Health Organization. Impact of the COVID-19 pandemic on TB detection and mortality in 2020[R/OL]. Geneva: World Health Organization, 2021. https://www.who.int/publications/m/item/impact-of-the-covid-19-pandemic-on-tb-detection-and-mortality-in-2020. |
[4] | 梁晨, 唐神结. 临床结核病病原体分子生物学诊断年度进展2022[J]. 中华结核和呼吸杂志, 2023, 46(2):176-182. |
LIANG C, TANG S J. Annual progress on molecular biological diagnosis of tuberculosis 2022[J]. Chin J Tuberc Respir Dis, 2023, 46(2):176-182. | |
[5] | WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection[R/OL]. Geneva: World Health Organization, 2021. https://www.ncbi.nlm.nih.gov/books/NBK572344/. |
[6] | WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection[R/OL]. Geneva: World Health Organization, 2021. https://www.ncbi.nlm.nih.gov/books/NBK572344/. |
[7] |
BISWAS S, UDDIN M K M, PAUL K K, et al. Xpert MTB/RIF Ultra assay for the detection of Mycobacterium tuberculosis in people with negative conventional Xpert MTB/RIF but chest imaging suggestive of tuberculosis in Dhaka, Bangladesh[J]. Int J Infect Dis, 2022, 114:244-251.
doi: 10.1016/j.ijid.2021.11.010 URL |
[8] |
PENG X, LIAO Q, FANG M, et al. Detection of pulmonary tuberculosis in children using the Xpert MTB/RIF Ultra assay on sputum: a multicenter study[J]. Eur J Clin Microbiol Infect Dis, 2022, 41(2):235-243.
doi: 10.1007/s10096-021-04340-0 |
[9] |
SIGNORINO C, VOTTO M, DE FILIPPO M, et al. Diagnostic accuracy of Xpert ultra for childhood tuberculosis: A preliminary systematic review and meta-analysis[J]. Pediatr Allergy Immunol, 2022, 33(Suppl 27):80-82.
doi: 10.1111/pai.v33.s27 URL |
[10] |
SUN L, LIU Y, FANG M, et al. Use of Xpert MTB/RIF Ultra assay on stool and gastric aspirate samples to diagnose pulmonary tuberculosis in children in a high-tuberculosis-burden but resource-limited area of China[J]. Int J Infect Dis, 2022, 114:236-243.
doi: 10.1016/j.ijid.2021.11.012 URL |
[11] |
BOLOKO L, SCHUTZ C, SIBIYA N, et al. Xpert Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker cohort study[J]. Lancet Microbe, 2022, 3(7):e521-e532.
doi: 10.1016/S2666-5247(22)00062-3 URL |
[12] |
PENN-NICHOLSON A, GOMATHI S N, UGARTE-GIL C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays[J]. Eur Respir J, 2021, 58(5):2100526.
doi: 10.1183/13993003.00526-2021 URL |
[13] |
NGANGUE Y R, MBULI C, NEH A, et al. Diagnostic Accuracy of the Truenat MTB Plus Assay and Comparison with the Xpert MTB/RIF Assay to Detect Tuberculosis among Hospital Outpatients in Cameroon[J]. J Clin Microbiol, 2022, 60(8):e0015522.
doi: 10.1128/jcm.00155-22 URL |
[14] |
MEAZA A, TESFAYE E, MOHAMED Z, et al. Diagnostic accuracy of Truenat Tuberculosis and Rifampicin-Resistance assays in Addis Ababa, Ethiopia[J]. PLoS One, 2021, 16(12):e0261084.
doi: 10.1371/journal.pone.0261084 URL |
[15] | ENGEL N, OCHODO E A, KARANJA P W, et al. Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views[J]. Cochrane Database Syst Rev, 2022, 4(4):CD014877. |
[16] |
SHARMA K, SHARMA M, SHARMA V, et al. Evalua-ting diagnostic performance of Truenat MTB Plus for gastrointestinal tuberculosis[J]. J Gastroenterol Hepatol, 2022, 37(8):1571-1578.
doi: 10.1111/jgh.v37.8 URL |
[17] |
HUANG Z, LACOURSE S M, KAY A W, et al. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study[J]. Lancet Microbe, 2022, 3(7):e482-e492.
doi: 10.1016/S2666-5247(22)00087-8 URL |
[18] |
ORESKOVIC A, WAALKES A, HOLMES E A, et al. Characterizing the molecular composition and diagnostic potential of Mycobacterium tuberculosis urinary cell-free DNA using next-generation sequencing[J]. Int J Infect Dis, 2021, 112:330-337.
doi: 10.1016/j.ijid.2021.09.042 URL |
[19] |
ZHENG W, QUAN B, GAO G, et al. Combination of Circulating Cell-Free DNA and Positron Emission Tomography to Distinguish Non-Small Cell Lung Cancer from Tuberculosis[J]. Lab Med, 2023, 54(2):130-141.
doi: 10.1093/labmed/lmac085 URL |
[20] |
DASS M, AITTAN S, MUTHUMOHAN R, et al. Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study[J]. Tuberculosis (Edinb), 2022, 135:102213.
doi: 10.1016/j.tube.2022.102213 URL |
[21] | PARK J H, KOO B, KIM M J, et al. Utility of plasma cell-free DNA detection using homobifunctional imidoesters using a microfluidic system for diagnosing active tuberculosis[J]. Infect Dis (Lond), 2022, 54(1):46-52. |
[22] |
WU X, TAN G, YANG J, et al. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS[J]. Int J Infect Dis, 2022, 121:47-54.
doi: 10.1016/j.ijid.2022.04.061 pmid: 35523300 |
[23] |
SHI J, HE G, NING H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients[J]. Tuberculosis (Edinb), 2022, 135:102209.
doi: 10.1016/j.tube.2022.102209 URL |
[24] | KHAN F A, MAJIDULLA A, TAVAZIVA G, et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease[J]. Lancet Digit Health, 2020, 2(11):e573-e581. |
[25] |
TAVAZIVA G, HARRIS M, ABIDI S K, et al. Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy[J]. Clin Infect Dis, 2022, 74(8):1390-1400.
doi: 10.1093/cid/ciab639 URL |
[26] |
TAVAZIVA G, MAJIDULLA A, NAZISH A, et al. Diagnostic accuracy of a commercially available, deep lear-ning-based chest X-ray interpretation software for detec-ting culture-confirmed pulmonary tuberculosis[J]. Int J Infect Dis, 2022, 122:15-20.
doi: 10.1016/j.ijid.2022.05.037 URL |
[27] | WHO. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-susceptible tuberculosis treatment, 2022 update[R/OL]. Geneva: World Health Organization, 2022. https://www.ncbi.nlm.nih.gov/books/NBK581329/. |
[28] |
DORMAN S E, NAHID P, KURBATOVA E V, et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis[J]. N Engl J Med, 2021, 384(18):1705-1718.
doi: 10.1056/NEJMoa2033400 URL |
[29] |
TURKOVA A, WILLS GH, WOBUDEYA E, et al. Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children[J]. N Engl J Med, 2022, 386(10):911-922.
doi: 10.1056/NEJMoa2104535 URL |
[30] | World Health Organization. Rapid communication: key changes to the treatment of drug-resistant tuberculosis[M]. Geneva: World Health Organization, 2022. |
[31] | WHO. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update[R/OL]. Geneva: WHO, 2022. https://www.ncbi.nlm.nih.gov/books/NBK558570/. |
[32] | 黄小艺, 刘志伟. 妇幼保健院新生儿早发型血流感染分析[J]. 中华医院感染学杂志, 2012, 22(11):2329-2332. |
HUANG X Y, LIU Z W. Analysis of neonatal early-onset blood stream infections in maternal and children's hospital[J]. Chin J Nosocomiol, 2012, 22(11):2329-2332. | |
[33] |
KIM J S, KIM Y H, LEE S H, et al. Early Bactericidal Activity of Delpazolid (LCB01-0371) in Patients with Pulmonary Tuberculosis[J]. Antimicrob Agents Chemother, 2022, 66(2):e0168421.
doi: 10.1128/aac.01684-21 URL |
[34] |
BRUINENBERG P, NEDELMAN J, YANG T J, et al. Single Ascending-Dose Study To Evaluate the Safety, To-lerability, and Pharmacokinetics of Sutezolid in Healthy Adult Subjects[J]. Antimicrob Agents Chemother, 2022, 66(4):e0210821.
doi: 10.1128/aac.02108-21 URL |
[35] |
KIM J, CHOI J, KANG H, et al. Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New Antituberculosis Agent, in Healthy Subjects[J]. Antimicrob Agents Chemother, 2022, 66(1):e0143621.
doi: 10.1128/AAC.01436-21 URL |
[36] |
NASIRI M J, ZANGIABADIAN M, ARABPOUR E, et al. Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis[J]. Int J Infect Dis, 2022, 124(Suppl 1):S90-S103.
doi: 10.1016/j.ijid.2022.02.043 URL |
[37] |
GARCIA-PRATS A J, FRIAS M, VAN DER LAAN L, et al. Delamanid Added to an Optimized Background Regimen in Children with Multidrug-Resistant Tuberculosis: Results of a Phase I/II Clinical Trial[J]. Antimicrob Agents Chemother, 2022, 66(5):e0214421.
doi: 10.1128/aac.02144-21 URL |
[38] |
GILS T, LYNEN L, DE JONG B C, et al. Pretomanid for tuberculosis: a systematic review[J]. Clin Microbiol Infect, 2022, 28(1):31-42.
doi: 10.1016/j.cmi.2021.08.007 URL |
[39] |
NDJEKA N, CAMPBELL J R, MEINTJES G, et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study[J]. Lancet Infect Dis, 2022, 22(7):1042-1051.
doi: 10.1016/S1473-3099(21)00811-2 pmid: 35512718 |
[40] |
ESMAIL A, OELOFSE S, LOMBARD C, et al. An All-Oral 6-Month Regimen for Multidrug-Resistant Tuberculosis: A Multicenter, Randomized Controlled Clinical Trial (the NExT Study)[J]. Am J Respir Crit Care Med, 2022, 205(10):1214-1227.
doi: 10.1164/rccm.202107-1779OC URL |
[41] |
DECROO T, AUNG K J M, HOSSAIN M A, et al. Bedaquiline can act as core drug in a standardised treatment regimen for fluoroquinolone-resistant rifampicin-resistant tuberculosis[J]. Eur Respir J, 2022, 59(3):2102124.
doi: 10.1183/13993003.02124-2021 URL |
[42] |
HUERGA H, KHAN U, BASTARD M, et al. Safety and Effectiveness Outcomes From a 14-Country Cohort of Patients With Multi-Drug Resistant Tuberculosis Treated Concomitantly With Bedaquiline, Delamanid, and Other Second-Line Drugs[J]. Clin Infect Dis, 2022, 75(8):1307-1314.
doi: 10.1093/cid/ciac176 URL |
[43] |
KHAN P Y, FRANKE M F, HEWISON C, et al. All-oral longer regimens are effective for the management of multidrug-resistant tuberculosis in high-burden settings[J]. Eur Respir J, 2022, 59(1):2004345.
doi: 10.1183/13993003.04345-2020 URL |
[44] |
HEWISON C, KHAN U, BASTARD M, et al. Safety of Treatment Regimens Containing Bedaquiline and Delamanid in the endTB Cohort[J]. Clin Infect Dis, 2022, 75(6):1006-1013.
doi: 10.1093/cid/ciac019 pmid: 35028659 |
[45] |
MOHR-HOLLAND E, DANIELS J, REUTER A, et al. Early mortality during rifampicin-resistant TB treatment[J]. Int J Tuberc Lung Dis, 2022, 26(2):150-157.
doi: 10.5588/ijtld.21.0494 URL |
[46] |
MOK J, LEE M, KIM D K, et al. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea[J]. Lancet, 2022, 400(10362):1522-1530.
doi: 10.1016/S0140-6736(22)01883-9 pmid: 36522208 |
[47] | NYANG'WA B T, BERRY C, KAZOUNIS E, et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis[J]. N N Engl J Med, 2022, 387(25):2331-2343. |
[48] | 中华人民共和国国家卫生健康委员会疾病预防控制局. 全国法定传染病疫情概况[R/OL]. (2022-02-01)[2022-04-22]. http://www.nhc.gov.cn/jkj/ne_index.shtml. |
Disease Prevention and Control Bureau of the National Health Commission of the People's Republic of China. Overview of the national epidemic of statutory infectious diseases[R/OL](2022-04-22)[2023-02-01]. http://www.nhc.gov.cn/jkj/ne_index.shtml. | |
[49] | World Health Organization. Tuberculosis profile: China[R/OL]. 2021-10-27[2022-10-27]. https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22CN%22. |
[1] | SHI Yuling, CHEN Wenjuan. Psoriasis comorbidity: prevalence, diagnosis and treatment [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 221-229. |
[2] | TANG Chunhua, GUO Lu, LI Qiong, ZHANG Lili. Interpretation on the report of global stroke data 2022 [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 238-246. |
[3] | WANG Zezhou, ZHENG Ying. Lung cancer worldwide and in China from 1990 to 2020: prevalence and prevention measures [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 1-7. |
[4] | HU Jingjing, LÜ Haiwei, XUN Jingna, SHEN Yinzhong, LIU Li, LU Hongzhou. Characteristcs of mycobacterial species distribution in acquired immunodeficiency syndrome patients with mycobacterial infection in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 450-455. |
[5] | BAO Pingping, WU Chunxiao, GU Kai, PANG Yi, WANG Chunfang, SHI Liang, XIANG Yongmei, GONG Yangming, DOU Jianming, WU Mengyin, FU Chen, SHI Yan. Analysis on incidence of stomach cancer in 2016 and trend of incidence during 2002-2016 in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 462-469. |
[6] | CHEN Hong, SHEN Yinzhong. Progress in diagnosis and treatment of human immunodeficiency virus infection/acquired immune deficiency syndrome complicated with tuberculosis [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 530-534. |
[7] | WANG Juan, LI Jia. Epidemiological analysis of human papilloma virus infection in male patients with condyloma acuminatum during 2017-2018 in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 572-576. |
[8] | FEI Yuanxin, KUANG Lijun, LU Caifeng, LI Weiwei, ZHOU Wei, ZHOU Qinghua. Sonographic findings of thyroid tuberculosis: Report of a case and review of literature [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 269-273. |
[9] | LIU Shanshan, Niu Jingya, WANG Tiange, LI Mian, ZHAO Zhiyun, XU Yu, LU Jieli, XU Min, BI Yufang, ZHANG Di. Epidemiological investigation on cardiometabolic abnormalities in Songnan Community residents with type 2 diabetes [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 323-328. |
[10] | CHENG Qijian, CHEN Ling, DU Wei, LIU Yahui, YANG Hua, XIAO Heping, SHI Guochao. Multicenter study on rpoB mutation in rifampicin-resistant Mycobacterium tuberculosis isolates of initial retreatment pulmonary tuberculosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 635-639. |
[11] | HE Meifang, LIU Jianhong, CHEN Chunhua, SHEN Hongyu. Comparison and application of whole blood interferon-gamma release assays and ELISA for detection of antibodies against Mycobacterium tuberculosis in auxiliary diagnosis of bacterium-negative pulmonary tuberculosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(05): 586-589. |
[12] | BAO Pingping, WU Chunxiao, ZHANG Minlu, GU Kai, XIANG Yongmei, PENG Peng, GONG Yangming, SHI Liang, ZOU Zhen.. Epidemiological features of major subtypes of leukemia and its incidence trends in Shanghai [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 484-491. |
[13] | ZHANG Guihong, XIA Qianlin, SHAN Menglin, ZHENG Jianghua. A preliminary study on diagnostic value of TSPOT.TB in HIV infection/acquired immuodeficiency syndrome patients with positive Mycobacteria culture [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(04): 404-408. |
[14] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(04): 410-414. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(01): 27-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||