Journal of Diagnostics Concepts & Practice ›› 2025, Vol. 24 ›› Issue (06): 583-592.doi: 10.16150/j.1671-2870.2025.06.003
• Expert forum • Previous Articles Next Articles
Received:2025-10-10
Revised:2025-11-20
Online:2025-12-25
Published:2025-12-25
Contact:
HUANG Man
E-mail:huangman@zju.edu.cn
CLC Number:
HUANG Man, DING Shuo. Current status and challenges in sepsis diagnosis and treatment[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(06): 583-592.
Table 1
Comparison of commonly used biomarkers for sepsis
| 标志物 | 分泌来源 | 动态变化 | 参考范围 | 特征 |
|---|---|---|---|---|
| 白细胞计数 | 骨髓 | 感染后8~20 h内开始上升,24~48 h内达到峰值,约3 d后恢复至参考范围 | 4 000~12 000 个/mm3 | 细胞因子驱动白细胞的产生和释放,导致其在脓毒症中计数升高;灵敏度59.5%,特异度79.6% |
| PCT | 甲状腺 | 炎症发生后2~4 h内上升,24 h达到峰值,增加数百倍甚至数千倍 | < 0.1 ng/mL | 脓毒症患者中PCT水平升高,与生存率相关,可作为感染严重程度和预后相关生物标志物;灵敏度71%~100%,特异度61%~88% |
| CRP | 肝脏 | 炎症发生后4~6 h内开始上升,在48~72 h达到峰值,炎症刺激消退后24 h内下降 | 0.3~1.0 mg/dL | 由肝脏合成,对炎症刺激反应敏感;灵敏度75%~91%,特异度36%~67% |
| IL-6 | 巨噬细胞和淋巴细胞 | 炎症发生1~2 h内上升,随后在炎症消退过程中缓慢下降 | 5~15 pg/mL | IL-6可激活B和T淋巴细胞,在损伤部位淋巴细胞和巨噬细胞的聚集过程中发挥作用,与疾病严重程度相关;灵敏度68%~72%,特异度72%~73% |
| TNF-α | 巨噬细胞 | 感染后6~8 h内上升 | ≤5 pg/mL | TNF-α是脓毒症中的关键细胞因子,可激活内皮细胞、招募中性粒细胞并调节免疫反应,其水平升高与炎症和器官损伤相关,有助于预后判断;灵敏度82.6%,特异度91.7% |
| 血浆可溶性白细胞分化抗原14亚型 | 巨噬细胞 | 细菌感染后2 h内上升 | <100 pg/mL | 是CD14的可溶性形式,表达于巨噬细胞和单核细胞上,对脂多糖等细菌配体具高亲和力;水平较高可能指示革兰氏阴性细菌感染,有助于评估脓毒症的严重程度和进展;灵敏度77%~85%,特异度73%~88% |
| 可溶髓系细胞表达的触发受体1(sTREM-1) | 中性粒细胞 | - | 31.25~2 000 pg/mL | 是一种表达于中性粒细胞、成熟单核细胞和巨噬细胞表面的糖蛋白,细菌感染可导致sTREM-1表达增加;目前已被研究用于区分细菌感染与非感染性炎症状态及指导脓毒症抗生素治疗;灵敏度73%~89%,特异度74%~86% |
| CD64 | 中性粒细胞 | 感染后48 h内上升 | <1.00 ng/mL | CD64是免疫球蛋白G Fc段的Ⅰ型受体,持续表达于单核细胞、巨噬细胞和树突状细胞表面,并介导细菌吞噬作用;灵敏度87%,特异度89% |
| 高迁移率族蛋白B1 | 巨噬细胞 | - | ≤4 ng/mL | 可由活化的巨噬细胞分泌,或在细胞坏死和凋亡过程中释放,作为一种损伤相关分子模式,通过Toll样受体4和晚期糖基化终末产物受体途径激活巨噬细胞,从而延长炎症反应;灵敏度75.8%,特异度41.3% |
| [1] |
TEGGERT A, DATTA H, ALI Z. Biomarkers for point-of-care diagnosis of sepsis[J]. Micromachines, 2020, 11(3):286.
doi: 10.3390/mi11030286 URL |
| [2] | FAY K, SAPIANO M R P, GOKHALE R, et al. Assessment of health care exposures and outcomes in adult patients with sepsis and septic shock[J]. JAMA Netw Open, 2020, 3(7):e206004. |
| [3] |
WENG L, XU Y, YIN P, et al. National incidence and mortality of hospitalized sepsis in China[J]. Crit Care, 2023, 27(1):84.
doi: 10.1186/s13054-023-04385-x |
| [4] |
XU J, GAO Y, HUANG X, et al. S100A9 in sepsis: A biomarker for inflammation and a mediator of organ damage[J]. Biochem Biophys Res Commun, 2025, 752:151484.
doi: 10.1016/j.bbrc.2025.151484 URL |
| [5] |
AUGUSTIN B, WU D, BLACK L P, et al. Multiomic molecular patterns of lipid dysregulation in a subphenotype of sepsis with higher shock incidence and mortality[J]. Crit Care, 2024, 28(1):431.
doi: 10.1186/s13054-024-05216-3 |
| [6] |
CAO M, WANG G, XIE J. Immune dysregulation in sepsis: Experiences, lessons and perspectives[J]. Cell Death Discov, 2023, 9(1):465.
doi: 10.1038/s41420-023-01766-7 pmid: 38114466 |
| [7] |
TAHA S, BINDAYNA K, ALJISHI M, et al. Transcriptomic profiling reveals distinct immune dysregulation in early-stage sepsis patients[J]. Int J Mol Sci, 2025, 26(14):6647.
doi: 10.3390/ijms26146647 URL |
| [8] |
COLORETTI I, TOSI M, BIAGIONI E, et al. Management of sepsis in the first 24 hours: Bundles of care and individualized approach[J]. Semin Respir Crit Care Med, 2024, 45(4):503-509.
doi: 10.1055/s-0044-1789185 pmid: 39208854 |
| [9] |
ANTCLIFFE D B, BURRELL A, BOYLE A J, et al. Sepsis subphenotypes, theragnostics and personalized sepsis care[J]. Intensive Care Med, 2025, 51(4):756-768.
doi: 10.1007/s00134-025-07873-6 |
| [10] |
SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801-810.
doi: 10.1001/jama.2016.0287 pmid: 26903338 |
| [11] | RANZANI O T, SINGER M, SALLUH J I F, et al. Development and validation of the Sequential Organ Failure Assessment (SOFA)-2 score[J]. JAMA, 2025. |
| [12] |
VAN OERS J A H, DE JONG E, KEMPERMAN H, et al. Diagnostic accuracy of procalcitonin and C-reactive protein is insufficient to predict proven infection: A retrospective cohort study in critically ill patients fulfilling the sepsis-3 criteria[J]. J Appl Lab Med, 2020, 5(1):62-72.
doi: 10.1373/jalm.2019.029777 pmid: 31811071 |
| [13] | PRKNO A, WACKER C, BRUNKHORST F M, et al. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock: A systematic review and meta-analysis[J]. Crit Care, 2013, 17(6):R291. |
| [14] |
BOUADMA L, LUYT C E, TUBACH F, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial[J]. Lancet, 2010, 375(9713):463-474.
doi: 10.1016/S0140-6736(09)61879-1 pmid: 20097417 |
| [15] |
SIRIWARDENA A K, JEGATHEESWARAN S, MASON J M. A procalcitonin-based algorithm to guide antibiotic use in patients with acute pancreatitis (PROCAP): A single-centre, patient-blinded, randomised controlled trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(10):913-921.
doi: 10.1016/S2468-1253(22)00212-6 URL |
| [16] |
KIP M M A, VAN OERS J A, SHAJIEI A, et al. Cost-effectiveness of procalcitonin testing to guide antibiotic treatment duration in critically ill patients: Results from a randomised controlled multicentre trial in the Netherlands[J]. Crit Care, 2018, 22(1):293.
doi: 10.1186/s13054-018-2234-3 |
| [17] |
MARIN M J, VAN WIJK X M R, CHAMBLISS A B. Advances in sepsis biomarkers[J]. Adv Clin Chem, 2024, 119:117-166.
doi: 10.1016/bs.acc.2024.02.003 pmid: 38514209 |
| [18] |
RIDKER P M. C-reactive protein: Eighty years from discovery to emergence as a major risk marker for cardiovascular disease[J]. Clin Chem, 2009, 55(2):209-215.
doi: 10.1373/clinchem.2008.119214 pmid: 19095723 |
| [19] |
SAXENA J, DAS S, KUMAR A, et al. Biomarkers in sepsis[J]. Clin Chim Acta, 2024, 562:119891.
doi: 10.1016/j.cca.2024.119891 URL |
| [20] | PFEIFFER D, ROßMANITH E, LANG I, et al. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model[J]. PLoS One, 2017, 12(6):e0179850. |
| [21] |
BINDAYNA K. microRNA as sepsis biomarkers: A comprehensive review[J]. Int J Mol Sci, 2024, 25(12):6476.
doi: 10.3390/ijms25126476 URL |
| [22] |
MA Y, LIU Y, HOU H, et al. miR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun, 2018, 500(3):828-837.
doi: 10.1016/j.bbrc.2018.04.168 URL |
| [23] | GALLIERA E, MASSACCESI L, DE VECCHI E, et al. Clinical application of presepsin as diagnostic biomarker of infection: Overview and updates[J]. Clin Chem Lab Med CCLM, 2019, 58(1):11-17. |
| [24] | JIANG J, WANG X, CHENG T, et al. Dynamic monito-ring of sTREM-1 and other biomarkers in acute cholangitis[J]. Mediators Inflamm, 2020, 2020:8203813. |
| [25] |
AKINRINMADE O A, CHETTY S, DARAMOLA A K, et al. CD64: An attractive immunotherapeutic target for M1-type macrophage mediated chronic inflammatory diseases[J]. Biomedicines, 2017, 5(3):56.
doi: 10.3390/biomedicines5030056 URL |
| [26] | AL MANSOUR N, AL MAHMEED A, BINDAYNA K. Effect of HMGB1 and HBD-3 levels in the diagnosis of sepsis- A comparative descriptive study[J]. Biochem Biophys Rep, 2023, 35:101511. |
| [27] | HE Y, HU Q, SAN S, et al. CRISPR-based biosensors for human health: A novel strategy to detect emerging infectious diseases[J]. Trends Analyt Chem, 2023,168. |
| [28] |
WU M, DU X, GU R, et al. Artificial intelligence for clinical decision support in sepsis[J]. Front Med, 2021, 8:665464.
doi: 10.3389/fmed.2021.665464 URL |
| [29] |
BARKAS G I, DIMEAS I E, KOTSIOU O S. Bug wars: Artificial intelligence strikes back in sepsis management[J]. Diagnostics, 2025, 15(15):1890.
doi: 10.3390/diagnostics15151890 URL |
| [30] |
YANG J, HAO S, HUANG J, et al. The application of artificial intelligence in the management of sepsis[J]. Med Rev, 2023, 3(5):369-380.
doi: 10.1515/mr-2023-0039 URL |
| [31] |
EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11):1181-1247.
doi: 10.1007/s00134-021-06506-y pmid: 34599691 |
| [32] |
ALI W A, BAZAN N S, ELBERRY A A, et al. A randomi-zed trial to compare procalcitonin and C-reactive protein in assessing severity of sepsis and in guiding antibacterial therapy in Egyptian critically ill patients[J]. Ir J Med Sci, 2021, 190(4):1487-1495.
doi: 10.1007/s11845-020-02494-y |
| [33] |
SHAHN Z, SHAPIRO N I, TYLER P D, et al. Fluid-limiting treatment strategies among sepsis patients in the ICU: A retrospective causal analysis[J]. Crit Care, 2020, 24(1):62.
doi: 10.1186/s13054-020-2767-0 |
| [34] |
GHOSH I, SANGHA S S, PANDEY G, et al. Author response: Insights into immunomodulatory therapy for sepsis[J]. Indian J Crit Care Med, 2025, 29(1):91.
doi: 10.5005/jp-journals-10071-24874 URL |
| [35] |
LIU Y C, SHOU S T, CHAI Y F. Immune checkpoints in sepsis: New hopes and challenges[J]. Int Rev Immunol, 2022, 41(2):207-216.
doi: 10.1080/08830185.2021.1884247 URL |
| [36] |
NAVEGANTES-LIMA K C, MONTEIRO V V S, DE FRANÇA GASPAR S L, et al. Agaricus brasiliensis mushroom protects against sepsis by alleviating oxidative and inflammatory response[J]. Front Immunol, 2020, 11:1238.
doi: 10.3389/fimmu.2020.01238 URL |
| [37] |
AMLAND R C, HAHN-COVER K E. Republished: Clinical decision support for early recognition of sepsis[J]. Am J Med Qual, 2019, 34(5):494-501.
doi: 10.1177/1062860619873225 pmid: 31479290 |
| [38] |
VAN DER AART T J, VISSER M, VAN LONDEN M, et al. The smell of sepsis: Electronic nose measurements improve early recognition of sepsis in the ED[J]. Am J Emerg Med, 2025, 88:126-133.
doi: 10.1016/j.ajem.2024.11.045 pmid: 39615435 |
| [39] |
KIM M H, CHOI J H. An update on sepsis biomarkers[J]. Infect Chemother, 2020, 52(1):1-18.
doi: 10.3947/ic.2020.52.1.1 pmid: 32239808 |
| [40] |
LEGESE M H, ASRAT D, SWEDBERG G, et al. Sepsis: Emerging pathogens and antimicrobial resistance in Ethiopian referral hospitals[J]. Antimicrob Resist Infect Control, 2022, 11(1):83.
doi: 10.1186/s13756-022-01122-x |
| [41] |
ANGULO-ZAMUDIO U A, VELAZQUEZ-MEZA M L, MARTINEZ-GARCIA J J, et al. Characteristics of neonates with sepsis associated with antimicrobial resistance and mortality in a tertiary hospital in Mexico: A retrospective observational study[J]. Pathogens, 2025, 14(6):588.
doi: 10.3390/pathogens14060588 URL |
| [42] |
CURREN E J, LUTGRING J D, KABBANI S, et al. Advancing diagnostic stewardship for healthcare-associated infections, antibiotic resistance, and sepsis[J]. Clin Infect Dis, 2022, 74(4):723-728.
doi: 10.1093/cid/ciab672 URL |
| [43] |
VIKTORSSON S A, TURNBULL I R. Sepsis in surgical patients: Personalized medicine in the future treatment of sepsis[J]. Surgery, 2024, 176(2):544-546.
doi: 10.1016/j.surg.2024.03.042 URL |
| [44] |
WANG N, HUANG H, TAN Y, et al. Research progress of biomarkers for sepsis and precision medicine[J]. Emerg Med Int, 2025, 2025:4585495.
doi: 10.1155/emmi.v2025.1 URL |
| [45] |
SEYMOUR C W, KENNEDY J N, WANG S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis[J]. JAMA, 2019, 321(20):2003-2017.
doi: 10.1001/jama.2019.5791 pmid: 31104070 |
| [46] |
BRUSE N, MOTOS A, VAN AMSTEL R, et al. Clinical phenotyping uncovers heterogeneous associations between corticosteroid treatment and survival in critically ill COVID-19 patients[J]. Intensive Care Med, 2024, 50(11):1884-1896.
doi: 10.1007/s00134-024-07593-3 |
| [47] |
BURNHAM K L, DAVENPORT E E, RADHAKRISHNAN J, et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia[J]. Am J Respir Crit Care Med, 2017, 196(3):328-339.
doi: 10.1164/rccm.201608-1685OC URL |
| [48] |
SCICLUNA B P, VAN VUGHT L A, ZWINDERMAN A H, et al. Classification of patients with sepsis according to blood genomic endotype: A prospective cohort study[J]. Lancet Respir Med, 2017, 5(10):816-826.
doi: 10.1016/S2213-2600(17)30294-1 pmid: 28864056 |
| [49] |
SWEENEY T E, AZAD T D, DONATO M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters[J]. Crit Care Med, 2018, 46(6):915-925.
doi: 10.1097/CCM.0000000000003084 pmid: 29537985 |
| [50] | SWEENEY T E, LIESENFELD O, WACKER J, et al. Validation of inflammopathic, adaptive, and coagulopathic sepsis endotypes in coronavirus disease 2019[J]. Crit Care Med, 2021, 49(2):e170-e178. |
| [51] |
WONG H R, CVIJANOVICH N, LIN R, et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling[J]. BMC Med, 2009, 7:34.
doi: 10.1186/1741-7015-7-34 pmid: 19624809 |
| [52] |
LI F, WANG S, GAO Z, et al. Harnessing artificial intelligence in sepsis care: Advances in early detection, persona-lized treatment, and real-time monitoring[J]. Front Med, 2025, 11:1510792.
doi: 10.3389/fmed.2024.1510792 URL |
| [1] | LU Hongyu, XU Youhai, XU Hao, LIU Dan, SONG Luxi. Analysis of diagnosis and treatment of 9 cases of primary thyroid lymphoma [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(06): 634-640. |
| [2] | LIU Gan, DAI Yuanyuan, CHANG Wenjiao, MA Xiaoling. Advances in sepsis screening technologies [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(06): 567-575. |
| [3] | MA Zhiqiang, LIN Zixin, WU Hao, WANG Zaijia, ZHANG Xiangtao, DONG Yifei. Prevalence, diagnosis, and treatment progress of resistant hypertension [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(05): 471-484. |
| [4] | ZENG Beibei, HUANG Yi, ZHANG Buteng, HUANG Ronghe, QIN Lihua, ZHOU Qiting. Predictive value of serum IGF-1 combined with TPOAb for the occurrence of hypothyroidism after 131I treatment in patients with hyperthyroidism [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(05): 505-511. |
| [5] | LI Yuhang, XIAO Shifu, YUE Ling. Advances in research on association between mild behavioral impairment and Alzheimer′s disease [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(05): 548-554. |
| [6] | ZHENG Xiangyu, CHEN Jinxiang, LIU Guorong, YANG Yaoxiang, CAI Shaoting, YANG Jing. Clinicopathological analysis and literature review of SMARCB1-deficient sinonasal carcinoma [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(05): 555-561. |
| [7] | SHEN Xiaonan, ZHOU Chunhua, ZHANG Benyan, GAO Lili, ZHANG Ling, HE Xiangyi, LIU Chenxiao, ZHANG Xianda, ZHANG Yao, WU Wei, GONG Tingting, ZHANG Tianyu, LIU Lei, ZOU Duowu, ZHANG Minmin. Comparative study on diagnostic performance of Acquire fine-needle biopsy and fine-needle aspiration in endoscopic ultrasonography-guided tissue acquisition for type 1 autoimmune pancreatitis [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(05): 498-504. |
| [8] | YANG Cuiping, CHEN Ping. Analysis of global trends and current status of diagnosis and treatment of inflammatory bowel diseas [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 373-382. |
| [9] | ZHANG Pingxin, YANG Jie, WANG Yangdi, CHEN Minhu, LI Xuehua, MAO Ren. Research progress on noninvasive quantitative diagnosis of intestinal fibrosis in Crohn's disease [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 383-392. |
| [10] | JI Bei, SU Wei, TUO Biguang, LIU Xuemei. Key updates of China Anti-Cancer Association Guidelines for Diagnosis and Treatment of Neuroendocrine Neoplasms (2025 Edition): Analysis of gastrointestinal endoscopic diagnosis and treatment [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 401-406. |
| [11] | ZHOU Yan, ZHANG Min. Interpretation of Chinese Guidelines for the Prevention and Management of Bronchial Asthma (2024 Edition) [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 415-422. |
| [12] | JIANG Nan, XU Yacong, LIU Jiayao, SUN Rong, ZHENG Gaoge, XU Lingyao, YAN Chunxiao. Diagnostic and prognostic value of combined detection of serum Hsp90α, eotaxin-2, and TRAF6 in early colorectal cancer [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 423-430. |
| [13] | ZHANG Ling, YAO Weiyan, ZOU Duowu. Application strategies of examination methods in clinical diagnosis of gastroesophageal reflux disease [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 359-364. |
| [14] | SHEN Qian. Current status and prospects of diagnosis and treatment of genetic kidney diseases in Chinese children [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(03): 241-248. |
| [15] | HU Xiaofan, XU Jing. Recent advances in diagnosis and treatment of primary membranous nephropathy [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(03): 249-254. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
