内科理论与实践 ›› 2021, Vol. 16 ›› Issue (02): 138-140.doi: 10.16138/j.1673-6087.2021.02.016
• 综述 • 上一篇
收稿日期:
2020-07-17
出版日期:
2021-04-25
发布日期:
2022-07-26
通讯作者:
王晓龙
E-mail:xiaolongwang126@126.com
基金资助:
Received:
2020-07-17
Online:
2021-04-25
Published:
2022-07-26
中图分类号:
赵春秀, 王晓龙. 呼出气分析在肺炎病原体诊断中的研究进展[J]. 内科理论与实践, 2021, 16(02): 138-140.
[1] |
Basanta M, Jarvis RM, Xu Y, et al. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers[J]. Analyst, 2010, 135(2): 315-320.
doi: 10.1039/b916374c pmid: 20098764 |
[2] |
Cheng Z, Feng K, Su Y, et al. Novel biosorbents synthesized from fungal and bacterial biomass and their applications in the adsorption of volatile organic compounds[J]. Bioresour Technol, 2020, 300: 122705.
doi: 10.1016/j.biortech.2019.122705 URL |
[3] |
Franchina FA, Purcaro G, Burklund A, et al. Evaluation of different adsorbent materials for the untargeted and targeted bacterial VOC analysis using GC×GC-MS[J]. Anal Chim Acta, 2019, 1066: 146-153.
doi: S0003-2670(19)30316-2 pmid: 31027530 |
[4] |
Tabibpour M, Yamini Y, Ahmadi SH, et al. Carbon fibers modified with polypyrrole for headspace solid phase microextraction of trace amounts of 2-pentyl furan from breath samples[J]. J Chromatogr A, 2020, 1609: 460497.
doi: 10.1016/j.chroma.2019.460497 URL |
[5] |
Biagini D, Lomonaco T, Ghimenti S, et al. Using labelled internal standards to improve needle trap micro-extraction technique prior to gas chromatography/mass spectrometry[J]. Talanta, 2019, 200: 145-155.
doi: S0039-9140(19)30298-X pmid: 31036166 |
[6] |
Chen CY, Lin WC, Yang HY. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research[J]. Respir Res, 2020, 21(1): 45.
doi: 10.1186/s12931-020-1285-6 URL |
[7] | Freddi S, Emelianov AV, Bobrinetskiy II, et al. Development of a sensing array for human breath analysis based on SWCNT layers functionalized with semiconductor organic molecules[J]. Adv Healthc Mater, 2020, 9(12): e2000377. |
[8] |
Gouma PI, Wang L, Simon SR, et al. Novel isoprene sensor for a flu virus breath monitor[J]. Sensors (Basel), 2017, 17(1): 199.
doi: 10.3390/s17010199 URL |
[9] |
Shen F, Wang J, Xu Z, et al. Rapid flu diagnosis using silicon nanowire sensor[J]. Nano Lett, 2012, 12(7): 3722-3730.
doi: 10.1021/nl301516z URL |
[10] |
Takenaka K, Togashi S, Miyake R, et al. Airborne virus detection by a sensing system using a disposable integrated impaction device[J]. J Breath Res, 2016, 10(3): 036009.
doi: 10.1088/1752-7155/10/3/036009 URL |
[11] |
Ramírez-Guízar S, Sykes H, Perry JD, et al. A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites[J]. J Chromatogr A, 2017, 1501: 79-88.
doi: S0021-9673(17)30568-X pmid: 28438317 |
[12] |
Purcaro G, Nasir M, Franchina FA, et al. Breath metabolome of mice infected with Pseudomonas aeruginosa[J]. Metabolomics, 2019, 15(1): 10.
doi: 10.1007/s11306-018-1461-6 URL |
[13] |
Neerincx AH, Geurts BP, Habets MF, et al. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations[J]. J Breath Res, 2016, 10(1): 016002.
doi: 10.1088/1752-7155/10/1/016002 URL |
[14] |
Bandyopadhaya A, Constantinou C, Psychogios N, et al. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle[J]. Int J Mol Med, 2016, 37(4): 867-878.
doi: 10.3892/ijmm.2016.2487 pmid: 26935176 |
[15] | Karami N, Rezadoost H, Mirzajani F, et al. Resistant/susceptible classification of respiratory tract pathogenic bacteria based on volatile organic compounds profiling[J]. Cell Mol Biol (Noisy-le-grand), 2018, 64(9): 6-15. |
[16] |
Purcaro G, Rees CA, Melvin JA, et al. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model[J]. J Breath Res, 2018, 12(4): 046001.
doi: 10.1088/1752-7163/aac2f1 URL |
[17] |
Koehler T, Ackermann I, Brecht D, et al. Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(12): 2881-2892.
doi: 10.1007/s00216-020-02529-4 pmid: 32198528 |
[18] |
Shestivska V, Nemec A, Dȓevínek P, et al. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry[J]. Rapid Commun Mass Spectrom, 2011, 25(17): 2459-2467.
doi: 10.1002/rcm.5146 URL |
[19] |
Montes Vidal D, von Rymon-Lipinski AL, Ravella S, et al. Long-chain Alkyl cyanides: unprecedented volatile compounds released by Pseudomonas and Micromonospora bacteria[J]. Angew Chem Int Ed Engl, 2017, 56(15): 4342-4346.
doi: 10.1002/anie.201611940 URL |
[20] |
Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis[J]. Tuberculosis (Edinb), 2008, 88 (4): 317-323.
doi: 10.1016/j.tube.2008.01.002 URL |
[21] |
Kolk AH, van Berkel JJ, Claassens MM, et al. Breath analysis as a potential diagnostic tool for tuberculosis[J]. Int J Tuberc Lung Dis, 2012, 16(6): 777-782.
doi: 10.5588/ijtld.11.0576 pmid: 22507235 |
[22] |
Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis[J]. Tuberculosis (Edinb), 2010, 90(2): 145-151.
doi: 10.1016/j.tube.2010.01.003 URL |
[23] |
Neerincx AH, Geurts BP, van Loon J, et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles[J]. J Breath Res, 2016, 10(4): 046014.
doi: 10.1088/1752-7155/10/4/046014 URL |
[24] |
Acharige MJT, Koshy S, Ismail N, et al. Breath-based diagnosis of fungal infections[J]. J Breath Res, 2018, 12(2): 027108.
doi: 10.1088/1752-7163/aa98a1 URL |
[25] |
Bhimji A, Bhaskaran A, Singer LG, et al. Aspergillus galactomannan detection in exhaled breath condensate compared to bronchoalveolar lavage fluid for the diagnosis of invasive aspergillosis in immunocompromised patients[J]. Clin Microbiol Infect, 2018, 24(6): 640-645.
doi: 10.1016/j.cmi.2017.09.018 URL |
[26] |
de Heer K, Kok MG, Fens N, et al. Detection of airway colonization by aspergillus fumigatus by use of electronic nose technology in patients with cystic fibrosis[J]. J Clin Microbiol, 2016, 54 (3): 569-575.
doi: 10.1128/JCM.02214-15 pmid: 26677251 |
[27] |
de Heer K, Vonk SI, Kok M, et al. eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae[J]. J Breath Res, 2016, 10(3): 036008.
doi: 10.1088/1752-7155/10/3/036008 URL |
[28] |
Traxler S, Bischoff AC, Saβ R, et al. VOC breath profile in spontaneously breathing awake swine during influenza A infection[J]. Sci Rep, 2018, 8 (1): 14857.
doi: 10.1038/s41598-018-33061-2 pmid: 30291257 |
[29] |
Traxler S, Barkowsky G, Saβ R, et al. Volatile scents of influenza A and S. pyogenes (co-)infected cells[J]. Sci Rep, 2019, 9 (1): 18894.
doi: 10.1038/s41598-019-55334-0 pmid: 31827195 |
[30] | Khoubnasabjafari M, Jouyban-Gharamaleki V, Ghanbari R, et al. Exhaled breath condensate as a potential specimen for diagnosing COVID-19[J]. 2020, 12(17): 1195-1197. |
[1] | 高维玲 胡崟清. 新冠疫情下家长陪同对先天性上睑下垂患儿围麻醉期护理效果的研究[J]. 组织工程与重建外科杂志, 2022, 18(4): 339-. |
[2] | 高彩红. 新型冠状病毒肺炎疫情下定点医院轻型急性缺血性卒中患者门诊精简化诊疗临床疗效分析[J]. 内科理论与实践, 2022, 17(05): 385-389. |
[3] | 闫晓红, 薄建萍. 呼出气一氧化氮在下气道慢性炎症疾病中的评估价值[J]. 内科理论与实践, 2022, 17(05): 418-422. |
[4] | 包志瑶, 孟文凯, 沈继敏, 李庆云. 成人继发于化脓性扁桃体炎的血行播散性肺炎1例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(04): 520-523. |
[5] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[6] | 杨玲, 查晴, 张倩茹, 叶佳雯, 杨克, 刘艳. 钙化性主动脉瓣膜病的生物标志物预测模型的构建[J]. 内科理论与实践, 2022, 17(04): 324-329. |
[7] | 杨之涛, 景峰, 吴文娟, 张祎博, 顾志冬, 陈影, 尚寒冰, 林靖生, 毕宇芳, 陈尔真. 方舱医院建设与运行管理探索[J]. 内科理论与实践, 2022, 17(02): 117-122. |
[8] | 辛海光, 刘嘉琳, 吴蓓雯, 陈海涛, 邱力萍. 新型冠状病毒肺炎疫情下公寓楼或民用住宅临时集中隔离治疗点防控对策[J]. 内科理论与实践, 2022, 17(02): 123-126. |
[9] | 李贤华. 新型冠状病毒肺炎疫情下上海交通大学医学院附属瑞金医院病患管理中心工作经验与方案[J]. 内科理论与实践, 2022, 17(02): 127-131. |
[10] | 查庆华, 丰青, 张寅, 王晓宁, 朱唯一. 新型冠状病毒肺炎疫情下上海交通大学医学院附属瑞金医院护理人力资源管理[J]. 内科理论与实践, 2022, 17(02): 135-136. |
[11] | 曹伟伟, 周增丁, 郭颖, 项晓刚, 陈嘉仪, 梁晓虹, 赵小婕, 王正廷. 新型冠状病毒肺炎收治点工勤人员穿脱防护用品培训依从性分析及管理对策[J]. 内科理论与实践, 2022, 17(02): 142-145. |
[12] | 梁婧, 梁晓虹, 项晓刚, 周增丁, 王正廷, 郭颖, 陈嘉仪, 赵小婕, 曹伟伟, 景峰. 新型冠状病毒肺炎疫情下利用ImageJ软件评价市民七步洗手法居家培训效果[J]. 内科理论与实践, 2022, 17(02): 156-158. |
[13] | 陈嘉仪, 周增丁, 曹伟伟, 赵小婕, 梁晓虹, 王正廷, 项晓刚, 郭颖. 新型冠状病毒肺炎疫情下普通医院转定点医院闭环工作人员管理防控经验[J]. 内科理论与实践, 2022, 17(02): 159-163. |
[14] | 梁晓虹, 郭颖, 曹伟伟, 赵小婕, 陈嘉仪, 王正廷, 项晓刚, 周增丁. 新型冠状病毒肺炎疫情下隔离病区及闭环内工作人员驻地紧急改建经验[J]. 内科理论与实践, 2022, 17(02): 164-167. |
[15] | 曹伟伟, 周增丁, 王正廷, 项晓刚, 陈嘉仪, 梁晓虹, 赵小婕, 郭颖. 新型冠状病毒肺炎疫情期间由普通医院快速转型为定点收治医院的工作人员分类培训经验[J]. 内科理论与实践, 2022, 17(02): 168-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||