内科理论与实践 ›› 2021, Vol. 16 ›› Issue (06): 435-437.doi: 10.16138/j.1673-6087.2021.06.014
收稿日期:
2021-03-26
出版日期:
2021-12-27
发布日期:
2022-07-25
通讯作者:
陈国芳,刘超
E-mail:chenguofang9801@126.com;liuchao@nfmcn.com
基金资助:
Received:
2021-03-26
Online:
2021-12-27
Published:
2022-07-25
中图分类号:
袁力, 韦晓, 陈国芳, 刘超. 生长分化因子15:调节脂肪组织能量代谢的新激素[J]. 内科理论与实践, 2021, 16(06): 435-437.
[1] |
Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy implications in global obesity[J]. Nat Rev Endocrinol, 2020, 16(11): 615-616.
doi: 10.1038/s41574-020-00411-y URL |
[2] |
Ng R, Sutradhar R, Yao Z, et al. Smoking, drinking, diet and physical activity-modifiable lifestyle risk factors and their associations with age to first chronic disease[J]. Int J Epidemiol, 2020, 49(1): 113-130.
doi: 10.1093/ije/dyz078 URL |
[3] | Kwok S, Adam S, Ho JH, et al. Obesity: a critical risk factor in the COVID-19 pandemic[J]. Clin Obes, 2020, 10(6): e12403. |
[4] |
Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL pathway in health and metabolic disease: friend or foe?[J]. Annu Rev Physiol, 2021, 83: 127-151.
doi: 10.1146/annurev-physiol-022020-045449 URL |
[5] |
Tsai VW, Zhang HP, Manandhar R, et al. GDF 15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS[J]. Int J Obes (Lond), 2019, 43(12): 2370-2380.
doi: 10.1038/s41366-019-0365-5 URL |
[6] |
Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases[J]. Cell Metab, 2018, 28(3): 353-368.
doi: 10.1016/j.cmet.2018.07.018 URL |
[7] |
Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15[J]. Nature, 2017, 550(7675): 255-259.
doi: 10.1038/nature24042 URL |
[8] | Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases[J]. J Diabetes Res, 2015, 2015: 490842. |
[9] | Lockhart SM, Saudek V, O’Rahilly S. GDF15: a hormone conveying somatic distress to the brain[J]. Endocr Rev, 2020, 41(4): 610-642. |
[10] |
Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism[J]. Int J Obes (Lond), 2014, 38(12): 1555-1564.
doi: 10.1038/ijo.2014.27 URL |
[11] |
Chung HK, Ryu D, Kim KS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis[J]. J Cell Biol, 2017, 216(1): 149-165.
doi: 10.1083/jcb.201607110 pmid: 27986797 |
[12] |
Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL[J]. Nat Med. 2017, 23(10): 1215-1219.
doi: 10.1038/nm.4393 pmid: 28846098 |
[13] |
Laurens C, Parmar A, Murphy E, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans[J]. JCI Insight, 2020, 5(6): e131870.
doi: 10.1172/jci.insight.131870 URL |
[14] |
Tsai VW, Zhang HP, Manandhar R, et al. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity[J]. Int J Obes (Lond), 2018, 42(3): 561-571.
doi: 10.1038/ijo.2017.258 URL |
[15] | Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies[J]. J Exp Biol, 2011, 214 Pt 2: 242-253. |
[16] |
Campderrós L, Moure R, Cairó M, et al. Brown adipocytes secrete GDF15 in response to thermogenic activation[J]. Obesity (Silver Spring), 2019, 27(10): 1606-1616.
doi: 10.1002/oby.22584 URL |
[17] |
Quesada-López T, Cereijo R, Turatsinze JV, et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes[J]. Nat Commun, 2016, 7: 13479.
doi: 10.1038/ncomms13479 pmid: 27853148 |
[18] |
Flicker D, Sancak Y, Mick E, et al. Exploring the in vivo role of the mitochondrial calcium uniporter in brown fat bioenergetics[J]. Cell Rep, 2019, 27(5): 1364-1375.
doi: S2211-1247(19)30468-1 pmid: 31042465 |
[19] |
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential[J]. Nat Med, 2013, 19(10): 1252-1263.
doi: 10.1038/nm.3361 URL |
[20] | Bargut TCL, Souza-Mello V, Aguila MB, et al. Browning of white adipose tissue: lessons from experimental models[J]. Horm Mol Biol Clin Investig, 2017, 31(1): 20160051. |
[21] | Ost M, Igual Gil C, Coleman V, et al. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress[J]. EMBO Rep, 2020, 21(3): e48804. |
[22] |
Geurts L, Everard A, Van Hul M, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota[J]. Nat Commun, 2015, 6: 6495.
doi: 10.1038/ncomms7495 pmid: 25757720 |
[23] |
Tindle HA, Omalu B, Courcoulas A, et al. Risk of suicide after long-term follow-up from bariatric surgery[J]. Am J Med, 2010, 123(11): 1036-1042.
doi: 10.1016/j.amjmed.2010.06.016 URL |
[24] |
Lee P, Smith S, Linderman J, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans[J]. Diabetes, 2014, 63(11): 3686-3698.
doi: 10.2337/db14-0513 URL |
[25] |
Oka M, Kobayashi N, Matsumura K, et al. New role for growth/differentiation factor 15 in the survival of transplanted brown adipose tissues in cooperation with interleukin-6[J]. Cells, 2020, 9(6): 1365.
doi: 10.3390/cells9061365 URL |
[1] | 于子优 蔡宜佐 李伟 张文杰. 无细胞脂肪组织提取液在皮肤及软组织再生修复中的应用[J]. 组织工程与重建外科杂志, 2021, 17(6): 561-. |
[2] | 吴昊, 白英, 邓可武. 心外膜脂肪组织与心血管疾病和代谢性疾病[J]. 内科理论与实践, 2021, 16(03): 208-211. |
[3] | 鲍婉婷, 曹丽辰, 魏昊, 余力, 周广东, 郭善禹. PGS构建特定形状脂肪组织的可行性研究[J]. 组织工程与重建外科杂志, 2020, 16(2): 87-90. |
[4] | 张郭, 周牧冉, 陈佳龙, 汪振星, 孙家明. 组织工程乳房的研究进展及临床展望[J]. 组织工程与重建外科杂志, 2020, 16(2): 160-164. |
[5] | 周鑫昀, 陈惠, 沈立松. 新型血清纤维化标志物在IgG4相关性疾病诊断评价中的临床价值[J]. 诊断学理论与实践, 2019, 18(03): 329-333. |
[6] | 王运东, 张运东, 王立志,. 血清生长分化因子15水平对慢性肝病患者严重程度的评估价值及其临床意义[J]. 内科理论与实践, 2019, 14(03): 183-187. |
[7] | 张佩祺,周双白,李青峰. 脂肪组织长期储存的研究进展[J]. 组织工程与重建外科杂志, 2018, 14(5): 295-297. |
[8] | 何际洲,高博闻,程辰,李青峰. 脂肪组织的分类及研究进展[J]. 组织工程与重建外科杂志, 2017, 13(4): 224-227. |
[9] | 李俊伟, 夏寒冰, 赵红丽, 刘淑霞. 基于超声测量的心外膜脂肪组织厚度预测冠心病的价值[J]. 诊断学理论与实践, 2017, 16(03): 324-327. |
[10] | 桂燕萍, 施仲伟,. 超声测量心外膜脂肪组织厚度在慢性心力衰竭患者中的临床价值[J]. 诊断学理论与实践, 2016, 15(03): 248-252. |
[11] | 齐笑, 简蔚霞,. 脂肪组织对骨代谢的调节关系[J]. 内科理论与实践, 2015, 10(06): 456-459. |
[12] | 丁金萍,孙恒赟,陈谨君,张文杰,刘伟,曹谊林,周广东. CD204阴性人脂肪来源细胞体外成软骨潜能的初步研究[J]. 组织工程与重建外科杂志, 2012, 8(1): 1-5. |
[13] | 李淼, 胡伟伟, 张增, 胡云秋, 章振林,. 410名绝经后健康妇女身体成分与骨密度相关性的研究[J]. 诊断学理论与实践, 2012, 11(01): 30-33. |
[14] | 熊永华, 姜云涛, 吴敏, 赖旭芝. 基于产热量优化的烧结余热回收操作参数设定[J]. 上海交通大学学报(自然版), 2011, 45(08): 1119-1124. |
[15] | 曲伸, 刘蒙, 高鑫,. 胰岛素抵抗与非酒精性脂肪性肝病关系的认识[J]. 诊断学理论与实践, 2009, 8(03): 240-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||