内科理论与实践 ›› 2023, Vol. 18 ›› Issue (02): 87-91.doi: 10.16138/j.1673-6087.2023.02.005
收稿日期:
2022-05-17
出版日期:
2023-04-25
发布日期:
2023-05-15
通讯作者:
林青 E-mail:
LI Yanran, XU Chenying, RONG Lan, LIN Qing()
Received:
2022-05-17
Online:
2023-04-25
Published:
2023-05-15
摘要:
目的: 探究老年慢性非传染性疾病患者5年代谢指标变化趋势以及代谢指标之间的相关性。方法: 2016年1月至12月基线纳入上海交通大学医学院附属瑞金医院老年病科收治的159例慢性非传染性疾病患者,年龄(66.2±7.4)岁。连续随访至2020年12月,每年采集临床资料与生化指标。运用Spearman相关性分析检测基线各代谢指标间的相关性及各代谢指标5年变化间的相关性。结果: Spearman相关分析显示,基线横断面分析中,受试者收缩压与2 h血糖(r=0.371)、空腹胰岛素(r=0.287)、C反应蛋白(r=0.379)、血尿酸(r=0.268)水平呈正相关(均P<0.05),与高密度脂蛋白(r=-0.308)和载脂蛋白A(r=-0.311)呈负相关(均P<0.05);另外收缩压水平的变化与C反应蛋白水平的变化呈正相关(r=0.305,P<0.05),与高密度脂蛋白水平的变化呈负相关(r=-0.269,P<0.05);糖代谢指标中的空腹胰岛素及2 h胰岛素与低密度脂蛋白(r分别为0.349、0.287)、空腹胰岛素及2 h胰岛素与载脂蛋白B(r分别为0.290、0.259)、2 h血糖及空腹胰岛素与血尿酸(r分别为0.287、0.327)水平的变化呈正相关(均P<0.05);高密度脂蛋白和载脂蛋白A水平的变化与C反应蛋白(r分别为-0.295、-0.377)、血尿酸(r分别为-0.263、-0.262)水平的变化呈负相关(P<0.05),低密度脂蛋白和载脂蛋白B水平的变化与血尿酸(r分别为0.258、0.257)水平的变化呈正相关(P<0.05)。结论: 老年慢性非传染性疾病患者的血压、血糖、血脂和炎症指标变化间具有相关性,呈现协同变化趋势。
中图分类号:
李嫣然, 徐琛莹, 荣岚, 林青. 临床老年慢性非传染性疾病患者5年代谢指标变化趋势的关联研究[J]. 内科理论与实践, 2023, 18(02): 87-91.
LI Yanran, XU Chenying, RONG Lan, LIN Qing. Correlation of 5-year metabolic traits changes in elderly patients with chronic non-infectious diseases[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 87-91.
表1
研究人群基线和5年随访的代谢指标水平[均n=159,M(Q1,Q3)]
代谢指标 | 基线 | 随访 | 差值Δ | P |
---|---|---|---|---|
收缩压(mmHg) | 130.00(119.00, 144.00) | 125.00(117.00, 138.00) | -4.00(-16.00, 6.00) | <.0001 |
舒张压(mmHg) | 78.00(73.00, 83.00) | 74.00(70.00, 79.00) | -3.00(-8.00, 2.00) | <.0001 |
脉压(mmHg) | 70.00(68.00, 77.00) | 72.00(70.00, 78.00) | 2.00(-1.00, 6.00) | <.0001 |
空腹血糖(mmol/L) | 5.51(5.07, 6.09) | 5.38(5.06, 6.38) | -0.07(-0.44, 0.62) | <.0001 |
2 h血糖(mmol/L) | 7.40(6.22, 9.10) | 7.86(6.21, 9.85) | 0.35(-075, 1.94) | <.0001 |
糖化血红蛋白(%) | 5.80(5.50, 6.10) | 5.80(5.50, 6.10) | 0.00(-0.75, 1.94) | <.0001 |
空腹胰岛素(μU/L) | 9.98(7.99, 14.28) | 9.04(7.15, 12.85) | -0.22(-2.86, 1.45) | <.0001 |
2 h胰岛素(μU/L) | 68.55(31.15, 109.20) | 55.86(31.63, 123.90) | 2.33(-31.15, 26.10) | <.0001 |
甘油三酯(mmol/L) | 1.51(0.99, 1.96) | 1.26(0.97, 1.68) | -0.20(-0.58, 0.10) | <.0001 |
总胆固醇(mmol/L) | 4.72(3.98, 5.52) | 4.73(3.93, 5.41) | -0.06(-0.79, 0.41) | <.0001 |
低密度脂蛋白(mmol/L) | 2.76(2.06, 3.57) | 2.67(2.16, 3.40) | -0.04(-0.69, 0.31) | <.0001 |
高密度脂蛋白(mmol/L) | 1.29(1.14, 1.60) | 1.35(1.17, 1.60) | 0.07(-0.03, 0.17) | <.0001 |
载脂蛋白A(g/L) | 1.40(1.27, 1.63) | 1.39(1.28, 1.61) | -0.01(-0.08, 0.16) | <.0001 |
载脂蛋白B(g/L) | 0.93(0.80, 1.06) | 0.88(0.71, 1.03) | -0.04(-0.69, 0.31) | <.0001 |
C反应蛋白(mg/L) | 2.1(1.6, 2.8) | 7.0(5.0, 10.0) | 4.9(2.4, 8.1) | <.0001 |
血肌酐(μmol/L) | 77.00(68.00, 84.00) | 77.00(70.00, 89.00) | 1.00(-4.00, 6.00) | <.0001 |
血尿酸(μmol/L) | 331.00(293.00, 380.00) | 343.00(294.00, 390.00) | 8.00(-31.00, 39.00) | <.0001 |
尿微量白蛋白(mg/L) | 1.07(1.05, 1.10) | 0.68(0.50, 1.08) | -0.50(-0.57, 0.05) | <.0001 |
尿白蛋白比肌酐(mg/mmol) | 2.50(2.50, 2.50) | 2.50(0.92, 2.50) | 0.00(-1.54, 0.00) | <.0001 |
表2
基线各代谢指标间的相关性
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1.000 | 0.558* | 0.433* | 0.083 | 0.371* | 0.176 | 0.287* | 0.256 | 0.056 | -0.179 | -0.159 | -0.308* | -0.311* | -0.080 | 0.379* | 0.142 | 0.268* | -0.108 | 0.230 |
B | 0.558* | 1.000 | 0.501 | 0.094 | 0.243 | 0.108 | 0.143 | 0.058 | 0.063 | 0.007 | 0.022 | -0.102 | -0.065 | -0.010 | -0.032 | -0.198 | 0.072 | -0.134 | 0.203 |
C | 0.433* | 0.501* | 1.000 | 0.049 | 0.092 | 0.056 | 0.040 | 0.075 | 0.171 | 0.097 | 0.065 | -0.089 | -0.058 | 0.076 | 0.137 | -0.150 | 0.043 | -0.100 | 0.135 |
D | 0.083 | 0.094 | 0.049 | 1.000 | 0.329* | 0.603* | 0.111 | -0.166 | 0.139 | -0.206 | -0.129 | -0.408* | -0.318* | -0.025 | 0.001 | 0.005 | 0.338* | 0.127 | -0.035 |
E | 0.371* | 0.243 | 0.092 | 0.329* | 1.000 | 0.516* | 0.197 | 0.457* | 0.095 | -0.063 | 0.081 | -0.304* | -0.168 | 0.087 | 0.340* | -0.042 | 0.258* | -0.016 | 0.151 |
F | 0.176 | 0.108 | 0.056 | 0.603* | 0.516* | 1.000 | 0.011 | -0.029 | 0.117 | -0.058 | 0.008 | -0.297* | -0.343* | 0.026 | 0.116 | -0.082 | 0.124 | 0.280* | 0.007 |
G | 0.287* | 0.143 | 0.040 | 0.111 | 0.197 | 0.011 | 1.000 | 0.581* | 0.123 | -0.109 | -0.020 | -0.330* | -0.193 | 0.026 | -0.033 | 0.094 | 0.476* | -0.116 | -0.012 |
H | 0.256 | 0.058 | 0.075 | -0.166 | 0.457* | -0.029 | 0.581* | 1.000 | 0.135 | 0.058 | 0.193 | -0.161 | -0.063 | 0.175 | 0.199 | 0.039 | 0.257 | -0.024 | -0.055 |
I | 0.056 | 0.053 | 0.171 | 0.139 | 0.095 | 0.117 | 0.123 | 0.135 | 1.000 | 0.401* | 0.239 | -0.343 | -0.156 | 0.539 | 0.074 | -0.094 | 0.177 | -0.042 | 0.025 |
J | -0.179 | 0.007 | 0.097 | -0.206 | -0.063 | -0.058 | -0.109 | 0.058 | 0.401* | 1.000 | 0.827* | 0.181 | 0.216 | 0.810 | -0.047 | -0.178 | -0.138 | -0.020 | -0.096 |
K | -0.159 | 0.022 | 0.065 | -0.129 | 0.081 | 0.008 | -0.020 | 0.193 | 0.239 | 0.827* | 1.000 | -0.056 | 0.006 | 0.813 | -0.084 | -0.136 | 0.007 | -0.054 | -0.168 |
L | -0.308* | -0.102 | -0.089 | -0.408* | -0.304* | -0.297* | -0.330* | -0.161 | -0.343* | 0.181 | -0.056 | 1.000 | 0.812* | -0.165 | -0.094 | -0.156 | -0.469* | 0.016 | -0.110 |
M | -0.311* | -0.065 | -0.058 | -0.318* | -0.168 | -0.343* | -0.193 | -0.063 | -0.156 | 0.216 | 0.006 | 0.812* | 1.000 | -0.014 | -0.102 | -0.256 | -0.339* | -0.050 | -0.073 |
N | -0.080 | -0.010 | 0.076 | -0.025 | 0.087 | 0.026 | 0.026 | 0.175 | 0.539* | 0.810* | 0.813* | -0.164 | -0.014 | 1.000 | -0.026 | -0.043 | 0.058 | 0.048 | -0.152 |
O | 0.379* | -0.032 | 0.137 | 0.001 | 0.340* | 0.116 | -0.033 | 0.199 | 0.074 | -0.047 | -0.084 | -0.094 | -0.102 | -0.025 | 1.000 | 0.112 | 0.039 | 0.020 | 0.012 |
P | 0.142 | -0.198 | -0.150 | 0.005 | -0.042 | -0.082 | 0.094 | 0.039 | -0.094 | -0.178 | -0.136 | -0.156 | -0.256 | -0.043 | 0.112 | 1.000 | 0.456* | 0.136 | -0.069 |
Q | 0.268* | 0.072 | 0.043 | 0.338* | 0.258* | 0.124 | 0.476* | 0.257* | 0.177 | -0.138 | 0.007 | -0.469* | -0.339* | 0.058 | 0.039 | 0.456* | 1.000 | -0.080 | -0.065 |
R | -0.108 | -0.134 | -0.100 | 0.127 | -0.016 | 0.280* | -0.116 | -0.024 | -0.042 | -0.020 | -0.054 | 0.016 | -0.050 | 0.048 | 0.020 | 0.136 | -0.080 | 1.000 | -0.277* |
S | 0.230 | 0.203 | 0.135 | -0.035 | 0.151 | 0.007 | -0.012 | -0.055 | 0.025 | -0.096 | -0.168 | -0.110 | -0.073 | -0.152 | 0.012 | -0.069 | -0.065 | -0.277* | 1.000 |
表3
各代谢指标5年变化间的相关性
△A | △B | △C | △D | △E | △F | △G | △H | △I | △J | △K | △L | △M | △N | △O | △P | △Q | △R | △S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
△A | 1.000 | 0.408* | 0.302* | -0.122 | 0.088 | 0.214 | 0.119 | -0.062 | 0.056 | 0.001 | 0.068 | -0.269* | -0.216* | 0.037 | 0.305* | 0.079 | 0.051 | 0.006 | 0.041 |
△B | 0.408* | 1.000 | 0.506* | 0.069 | 0.173 | 0.224 | 0.098 | 0.092 | 0.094 | 0.131 | 0.166 | -0.209 | -0.045 | 0.024 | -0.001 | -0.177 | -0.068 | -0.061 | 0.052 |
△C | 0.302* | 0.506* | 1.000 | -0.078 | -0.010 | 0.146 | -0.104 | -0.034 | 0.108 | 0.236 | 0.083 | 0.011 | 0.071 | 0.092 | 0.073 | -0.038 | 0.051 | -0.094 | -0.174 |
△D | -0.122 | 0.069 | -0.078 | 1.000 | 0.434* | 0.416* | 0.253 | 0.172 | -0.097 | 0.069 | 0.100 | 0.107 | 0.023 | 0.045 | -0.192 | -0.109 | 0.076 | 0.013 | 0.039 |
△E | 0.088 | 0.173 | -0.010 | 0.434* | 1.000 | 0.430 | 0.213 | 0.570* | 0.003 | 0.030 | 0.184 | -0.113 | -0.084 | 0.172 | -0.028 | -0.051 | 0.287* | 0.204 | -0.047 |
△F | 0.214 | 0.224 | 0.146 | 0.416* | 0.430* | 1.000 | 0.179 | 0.150 | -0.042 | 0.004 | 0.207 | -0.203 | -0.094 | 0.149 | 0.202 | -0.103 | 0.125 | 0.129 | -0.023 |
△G | 0.119 | 0.098 | -0.104 | 0.253 | 0.213 | 0.179 | 1.000 | 0.468* | -0.181 | 0.163 | 0.349* | -0.058 | 0.035 | 0.290* | -0.051 | 0.000 | 0.327* | -0.071 | 0.213 |
△H | -0.062 | 0.092 | -0.034 | 0.172 | 0.570* | 0.150 | 0.468* | 1.000 | -0.033 | 0.136 | 0.287* | -0.050 | 0.055 | 0.259* | -0.215 | 0.003 | 0.192 | 0.216 | 0.006 |
△I | 0.056 | 0.094 | 0.108 | -0.097 | 0.003 | -0.042 | -0.181 | -0.033 | 1.000 | 0.166 | 0.182 | -0.041 | 0.073 | 0.166 | -0.078 | 0.078 | -0.158 | -0.046 | -0.140 |
△J | 0.001 | 0.131 | 0.236 | 0.069 | 0.030 | 0.004 | 0.163 | 0.136 | 0.166 | 1.000 | 0.848* | 0.256 | 0.252 | 0.695* | -0.213 | 0.034 | 0.188 | -0.061 | 0.103 |
△K | 0.068 | 0.166 | 0.083 | 0.100 | 0.184 | 0.207 | 0.349* | 0.287* | 0.182 | 0.848* | 1.000 | 0.034 | 0.120 | 0.824* | -0.156 | 0.023 | 0.258* | -0.071 | 0.123 |
△L | -0.269* | -0.209 | 0.011 | 0.107 | -0.113 | -0.203 | -0.058 | -0.050 | -0.041 | 0.256 | 0.034 | 1.000 | 0.725* | 0.022 | -0.295* | 0.020 | -0.263* | -0.173 | 0.081 |
△M | -0.216 | -0.045 | 0.071 | 0.023 | -0.084 | -0.094 | 0.035 | 0.055 | 0.073 | 0.252 | 0.120 | 0.725* | 1.000 | 0.101 | -0.377* | 0.169 | -0.262* | -0.165 | -0.001 |
△N | 0.037 | 0.024 | 0.092 | 0.045 | 0.172 | 0.149 | 0.290** | 0.259 | 0.166 | 0.695* | 0.824* | 0.022 | 0.101 | 1.000 | -0.138 | 0.048 | 0.257 | 0.070 | 0.159 |
△O | 0.305* | -0.001 | 0.073 | -0.192 | -0.028 | 0.202 | -0.051 | -0.215 | -0.078 | -0.213 | -0.156 | -0.295* | -0.377* | -0.138 | 1.000 | -0.024 | 0.052 | -0.046 | 0.092 |
△P | 0.079 | -0.177 | -0.038 | -0.109 | -0.051 | -0.103 | 0.000 | 0.003 | 0.078 | 0.034 | 0.023 | 0.020 | 0.169 | 0.048 | -0.024 | 1.000 | -0.022 | 0.157 | -0.062 |
△Q | 0.051 | -0.068 | 0.051 | 0.076 | 0.287* | 0.125 | 0.327* | 0.192 | -0.158 | 0.188 | 0.258* | -0.263* | -0.262* | 0.257* | 0.052 | -0.022 | 1.000 | -0.050 | -0.229 |
△R | 0.006 | -0.061 | -0.094 | 0.013 | 0.204 | 0.129 | -0.071 | 0.216 | -0.046 | -0.061 | -0.071 | -0.173 | -0.165 | 0.070 | -0.046 | 0.157 | -0.050 | 1.000 | -0.064 |
△S | 0.041 | 0.052 | -0.174 | 0.039 | -0.047 | -0.023 | 0.213 | 0.006 | -0.140 | 0.103 | 0.123 | 0.081 | -0.001 | 0.159 | 0.092 | -0.062 | -0.229 | -0.064 | 1.000 |
[1] | UN Department of Economic and Social Affairs, Population Division. World population ageing 2019[EB/OL]. New York, NY: United Nations, 2020. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Report.pdf. |
[2] | WHO. China country assessment report on ageing and health[EB/OL]. 2015. https://apps.who.int/iris/handle/10665/194271. |
[3] |
Ren J, Sowers JR, Zhang Y. Metabolic stress, autophagy, and cardiovascular aging: from pathophysiology to therapeutics[J]. Trends Endocrinol Metab, 2018, 29(10): 699-711.
doi: 10.1016/j.tem.2018.08.001 URL |
[4] | 张洁, 陈友鹏, 李虹, 等. 中老年新发脂肪肝与糖脂代谢指标增量变化的关系[J]. 中国老年学杂志, 2012, 32(11): 2346-2347. |
[5] |
Finkel T. The metabolic regulation of aging[J]. Nat Med, 2015, 21(12): 1416-1423.
doi: 10.1038/nm.3998 pmid: 26646498 |
[6] |
Edwards BK, Noone AM, Mariotto AB, et al. Annual Report to the Nation on the Status of Cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer[J]. Cancer, 2014, 120(9): 1290-1314.
doi: 10.1002/cncr.28509 pmid: 24343171 |
[7] |
Davis JW, Chung R, Juarez DT. Prevalence of comorbid conditions with aging among patients with diabetes and cardiovascular disease[J]. Hawaii Med J, 2011, 70(10): 209-213.
pmid: 22162595 |
[8] |
Zhang L, Ma L, Sun F, et al. A Multicenter study of multimorbidity in older adult inpatients in china[J]. J Nutr Health Aging, 2020, 24(3): 269-276.
doi: 10.1007/s12603-020-1311-x pmid: 32115607 |
[9] | 张冉, 路云, 张闪闪, 等. 中国老年人慢性病共病患病模式及疾病相关性分析[J]. 中国公共卫生, 2019, 35(08): 1003-1005. |
[10] |
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1223-1249.
doi: 10.1016/S0140-6736(20)30752-2 pmid: 33069327 |
[11] |
Niccoli T, Partridge L. Ageing as a risk factor for disease[J]. Curr Biol, 2012, 22(17): R741-R752.
doi: 10.1016/j.cub.2012.07.024 URL |
[12] | World Health Organization. World Health Organization China country assessment report on ageing and health[EB/OL]. 2015. https://apps.who.int/iris/handle/10665/194271. |
[13] |
Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy[J]. Hypertension, 1995, 26(6 Pt 1):869-879.
doi: 10.1161/01.hyp.26.6.869 pmid: 7490142 |
[14] |
Palta P, Albert MS, Gottesman RF. Heart health meets cognitive health: evidence on the role of blood pressure[J]. Lancet Neurol, 2021, 20(10): 854-867.
doi: 10.1016/S1474-4422(21)00248-9 pmid: 34536406 |
[15] |
Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2017 focused update of the 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk[J]. J Am Coll Cardiol, 2017, 70(14): 1785-1822.
doi: S0735-1097(17)38898-8 pmid: 28886926 |
[16] |
Halter JB, Musi N, McFarland Horne F, et al. Diabetes and cardiovascular disease in older adults: current status and future directions[J]. Diabetes, 2014, 63(8): 2578-2589.
doi: 10.2337/db14-0020 pmid: 25060886 |
[17] |
Wang T, Zhao Z, Wang G, et al. Age-related disparities in diabetes risk attributable to modifiable risk factor profiles in Chinese adults: a nationwide, population-based, cohort study[J]. The Lancet Healthy Longevity, 2021, 2(10): e618-e628.
doi: 10.1016/S2666-7568(21)00177-X URL |
[18] |
Wang T, Zhao Z, Yu X, et al. Age-specific modifiable risk factor profiles for cardiovascular disease and all-cause mortality: a nationwide, population-based, prospective cohort study[J]. The Lancet Regional Health-Western Pacific, 2021, 17: 100277.
doi: 10.1016/j.lanwpc.2021.100277 URL |
[1] | 黄清, 王刚. 106例肝豆状核变性的临床表型和生存期研究[J]. 内科理论与实践, 2021, 16(05): 319-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||