内科理论与实践 ›› 2021, Vol. 16 ›› Issue (05): 361-365.doi: 10.16138/j.1673-6087.2021.05.015
收稿日期:
2021-06-21
出版日期:
2021-10-20
发布日期:
2022-07-25
通讯作者:
王刚
E-mail:wgneuron@hotmail.com
基金资助:
Received:
2021-06-21
Online:
2021-10-20
Published:
2022-07-25
中图分类号:
李建平, 王刚. 铜代谢稳态失调与神经退行性疾病的相关性研究进展[J]. 内科理论与实践, 2021, 16(05): 361-365.
图1
铜稳态及代谢示意图[5-6] A:细胞铜稳态。CTR1:铜转运体1(copper transporter 1);GSH:谷胱甘肽(glutathione);MT:金属硫蛋白(metallothionein);COX17:细胞色素C氧化酶17(cytochrome C oxidase 17);CCS:超氧化物歧化酶铜伴侣蛋白(copper chaperones for superoxide dismutase 1,CCS);SOD1:超氧化物歧化酶1(superoxide dismutase 1);TGN:反面高尔基体网(trans Golgi network);CP:铜蓝蛋白(ceruloplasmin)。B:体内铜代谢。
[1] |
Kardos J, Héja L, Simon á, et al. Copper signalling: causes and consequences[J]. Cell Commun Signal, 2018, 16(1): 71.
doi: 10.1186/s12964-018-0277-3 URL |
[2] |
Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10): 1415-1429.
doi: 10.1007/s00424-020-02412-2 URL |
[3] |
Zaccak M, Qasem Z, Gevorkyan-Airapetov L, et al. An EPR study on the interaction between the Cu(I) metal binding domains of ATP7B and the ATOX1 metallochaperone[J]. Int J Mol Sci, 2020, 21(15): 5536.
doi: 10.3390/ijms21155536 URL |
[4] |
Santoro A, Calvo JS, Peris-Díaz MD, et al. The glutathione/metallothionein system challenges the design of efficient O2 -activating copper complexes[J]. Angew Chem Int Ed Engl, 2020, 59(20): 7830-7835.
doi: 10.1002/anie.201916316 URL |
[5] |
Scheiber IF, Bruha R, Dušek P. Pathogenesis of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 43-55.
doi: B978-0-444-63625-6.00005-7 pmid: 28433109 |
[6] |
Antonucci L, Porcu C, Iannucci G, et al. Non-alcoholic fatty liver disease and nutritional implications: special focus on copper[J]. Nutrients, 2017, 9(10): 1137.
doi: 10.3390/nu9101137 URL |
[7] |
Yu CH, Lee W, Nokhrin S, et al. The structure of metal binding domain 1 of the copper transporter ATP7B reveals mechanism of a singular Wilson disease mutation[J]. Sci Rep, 2018, 8(1): 581.
doi: 10.1038/s41598-017-18951-1 URL |
[8] |
Braiterman LT, Gupta A, Chaerkady R, et al. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B)[J]. J Biol Chem, 2015, 290(14): 8803-8819.
doi: 10.1074/jbc.M114.627414 pmid: 25666620 |
[9] |
Kluska A, Kulecka M, Litwin T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype[J]. Liver Int, 2019, 39(1): 177-186.
doi: 10.1111/liv.13967 pmid: 30230192 |
[10] | Chang IJ, Hahn SH. The genetics of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 19-34. |
[11] | Hua R, Hua F, Jiao Y, et al. Mutational analysis of ATP7B in Chinese Wilson disease patients[J]. Am J Transl Res, 2016, 8(6): 2851-2861. |
[12] |
Cheng N, Wang H, Wu W, et al. Spectrum of ATP7B mutations and genotype-phenotype correlation in large-scale Chinese patients with Wilson disease[J]. Clin Genet, 2017, 92(1): 69-79.
doi: 10.1111/cge.12951 pmid: 27982432 |
[13] | Braiterman LT, Murthy A, Jayakanthan S, et al. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B[J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1364-E1373. |
[14] |
Fanni D, Gerosa C, Nurchi VM, et al. Copper-induced epigenetic changes shape the clinical phenotype in Wilson’s disease[J]. Curr Med Chem, 2021, 28(14): 2707-2716.
doi: 10.2174/0929867327666200730214757 URL |
[15] |
Ferenci P, Stremmel W, Członkowska A, et al. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of Wilson disease[J]. Hepatology, 2019, 69(4): 1464-1476.
doi: 10.1002/hep.30280 pmid: 30232804 |
[16] | 周霄颖, 尹瀚浚, 王春莉, 等. 55例肝豆状核变性患儿表型与基因型分析[J]. 中华肝脏病杂志, 2020, 28(7): 603-607. |
[17] | Borchard S, Bork F, Rieder T, et al. The exceptional sensitivity of brain mitochondria to copper[J]. Toxicol In Vitro, 2018, 51: 11-22. |
[18] |
Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson’s disease[J]. Ann N Y Acad Sci, 2014, 1315: 37-44.
doi: 10.1111/nyas.12337 URL |
[19] |
Mikol J, Vital C, Wassef M, et al. Extensive cortico-subcortical lesions in Wilson’s disease: clinico-pathological study of two cases[J]. Acta Neuropathol, 2005, 110(5): 451-458.
doi: 10.1007/s00401-005-1061-1 URL |
[20] |
Smolinski L, Litwin T, Redzia-Ogrodnik B, et al. Brain volume is related to neurological impairment and to copper overload in Wilson’s disease[J]. Neurol Sci, 2019, 40(10): 2089-2095.
doi: 10.1007/s10072-019-03942-z pmid: 31147855 |
[21] |
Doganay S, Gumus K, Koc G, et al. Magnetic susceptibility changes in the basal ganglia and brain stem of patients with Wilson’s disease: evaluation with quantitative susceptibility mapping[J]. Magn Reson Med Sci, 2018, 17(1): 73-79.
doi: 10.2463/mrms.mp.2016-0145 pmid: 28515413 |
[22] | Poujois A, Mikol J, Woimant F. Wilson disease: brain pathology[J]. Handb Clin Neurol, 2017, 142: 77-89. |
[23] |
Mariani S, Ventriglia M, Simonelli I, et al. Fe and Cu do not differ in Parkinson’s disease: a replication study plus meta-analysis[J]. Neurobiol Aging, 2013, 34(2): 632-633.
doi: 10.1016/j.neurobiolaging.2012.05.015 URL |
[24] |
Pall HS, Williams AC, Blake DR, et al. Raised cerebrospinal-fluid copper concentration in Parkinson’s disease[J]. Lancet, 1987, 2(8553): 238-241.
pmid: 2886715 |
[25] |
Davies KM, Bohic S, Carmona A, et al. Copper pathology in vulnerable brain regions in Parkinson’s disease[J]. Neurobiol Aging, 2014, 35(4): 858-866.
doi: 10.1016/j.neurobiolaging.2013.09.034 URL |
[26] |
Miotto MC, Rodriguez EE, Valiente-Gabioud AA, et al. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson’s disease[J]. Inorg Chem, 2014, 53(9): 4350-4358.
doi: 10.1021/ic4031377 pmid: 24725094 |
[27] |
Bisaglia M, Bubacco L. Copper ions and Parkinson’s disease: why is homeostasis so relevant?[J]. Biomolecules, 2020, 10(2): 195.
doi: 10.3390/biom10020195 URL |
[28] |
Horvath I, Blockhuys S, Šulskis D, et al. Interaction between copper chaperone ATOX1 and Parkinson’s disease protein α-synuclein includes metal-binding sites and occurs in living cells[J]. ACS Chem Neurosci, 2019, 10(11): 4659-4668.
doi: 10.1021/acschemneuro.9b00476 pmid: 31600047 |
[29] |
Gou DH, Huang TT, Li W, et al. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson’s disease[J]. Redox Biol, 2021, 38: 101795.
doi: 10.1016/j.redox.2020.101795 URL |
[30] |
Ha Y, Yang A, Lee S, et al. Dopamine and Cu+/2+ can induce oligomerization of alpha-synuclein in the absence of oxygen: two types of oligomerization mechanisms for alpha-synuclein and related cell toxicity studies[J]. J Neurosci Res, 2014, 92(3): 359-368.
doi: 10.1002/jnr.23323 URL |
[31] |
Tavassoly O, Nokhrin S, Dmitriev OY, et al. Cu(Ⅱ) and dopamine bind to α-synuclein and cause large conformational changes[J]. Febs J, 2014, 281(12): 2738-2753.
doi: 10.1111/febs.12817 pmid: 24725464 |
[32] |
Tian S, Jones SM, Jose A, et al. Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis[J]. J Am Chem Soc, 2019, 141(27): 10736-10743.
doi: 10.1021/jacs.9b03661 URL |
[33] |
Wang B, Wang XP. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6): 539-549.
doi: 10.2174/1570159X16666180508113025 pmid: 29737252 |
[34] |
Ayton S, Lei P, Duce JA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease[J]. Ann Neurol, 2013, 73(4): 554-559.
doi: 10.1002/ana.23817 URL |
[35] |
Trist BG, Davies KM, Cottam V, et al. Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson’s disease brain[J]. Acta Neuropathol, 2017, 134(1): 113-127.
doi: 10.1007/s00401-017-1726-6 URL |
[36] |
Wright GSA. Molecular and pharmacological chaperones for SOD1[J]. Biochem Soc Trans, 2020, 48(4): 1795-1806.
doi: 10.1042/BST20200318 URL |
[37] |
Squitti R, Simonelli I, Ventriglia M, et al. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease[J]. J Alzheimers Dis, 2014, 38(4): 809-822.
doi: 10.3233/JAD-131247 URL |
[38] |
Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis[J]. Neurobiol Dis, 2013, 59: 100-110.
doi: 10.1016/j.nbd.2013.07.005 pmid: 23867235 |
[39] |
Li DD, Zhang W, Wang ZY, et al. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease[J]. Front Aging Neurosci, 2017, 9: 300.
doi: 10.3389/fnagi.2017.00300 URL |
[40] |
Wang ZX, Tan L, Wang HF, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2015, 47(3): 565-581.
doi: 10.3233/JAD-143108 URL |
[41] |
Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox Biol, 2018, 14: 450-464.
doi: S2213-2317(17)30726-7 pmid: 29080524 |
[42] |
Kepp KP. Alzheimer’s disease due to loss of function: a new synthesis of the available data[J]. Prog Neurobiol, 2016, 143: 36-60.
doi: 10.1016/j.pneurobio.2016.06.004 URL |
[43] |
Squitti R, Siotto M, Arciello M, et al. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer’s disease[J]. Metallomics, 2016, 8(9): 863-873.
doi: 10.1039/c6mt00101g pmid: 27499330 |
[1] | 赵雅洁, 于晓璇, 王晓平. 第七届国际帕金森病暨运动障碍学术研讨会(上海)会议纪要[J]. 内科理论与实践, 2022, 17(05): 423-424. |
[2] | 王新新, 田敏, 张秀芳, 刘艺鸣. 帕金森病冻结步态的相关因素研究进展[J]. 内科理论与实践, 2022, 17(04): 339-343. |
[3] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[4] | 李建平, 任汝静, 王刚. 阿尔茨海默病的临床诊治进展[J]. 诊断学理论与实践, 2022, 21(01): 18-21. |
[5] | 付丛会, 徐英, 苏巍, 文静, 刘志芳, 朱倩, 张静怡, 熊泽民, 陈兰兰, 贾杰. 新型冠状病毒性肺炎疫情封闭管理期间正念减压疗法对阿尔茨海默病患者情绪障碍及睡眠状况的影响分析[J]. 诊断学理论与实践, 2022, 21(01): 46-51. |
[6] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[7] | 付朝伟. 阿尔茨海默病重在预防——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 8-11. |
[8] | 黄沛, 任汝静, 潘昱, 林国珍, 王刚. 早发型阿尔茨海默病合并脑淀粉样血管病一例报道[J]. 诊断学理论与实践, 2022, 21(01): 86-89. |
[9] | 马步勇. Aβ级联假说或tau蛋白假说,哪个更正确?[J]. 上海交通大学学报, 2021, 55(Sup.1): 58-59. |
[10] | 王训, 韩咏竹, 杨任民. 肝豆状核变性的中西医药物治疗概况[J]. 内科理论与实践, 2021, 16(05): 294-298. |
[11] | 洪铭范. 肝豆状核变性的超声诊断[J]. 内科理论与实践, 2021, 16(05): 299-303. |
[12] | 谢安木, 栾梦葶, 王莹, 石万达. 肝豆状核变性的神经影像学表现[J]. 内科理论与实践, 2021, 16(05): 304-307. |
[13] | 周香雪, 黄海威. 肝豆状核变性影像学研究进展[J]. 内科理论与实践, 2021, 16(05): 308-314. |
[14] | 洪培伟, 丛雪, 徐严明. 2005至2020年中国西南地区肝豆状核变性住院费用影响因素分析[J]. 内科理论与实践, 2021, 16(05): 315-318. |
[15] | 黄清, 王刚. 106例肝豆状核变性的临床表型和生存期研究[J]. 内科理论与实践, 2021, 16(05): 319-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||