内科理论与实践 ›› 2021, Vol. 16 ›› Issue (06): 397-403.doi: 10.16138/j.1673-6087.2021.06.006
赵晴晴, 周金鑫, 潘昱, 琚卉君, 朱丽颖, 刘瑒, 张一帆()
收稿日期:
2020-07-28
出版日期:
2021-12-27
发布日期:
2022-07-25
通讯作者:
张一帆
E-mail:zhang_yifan@126.com
基金资助:
ZHAO Qingqing, ZHOU Jinxin, PAN Yu, JU Huijun, ZHU Liying, LIU Yang, ZHANG Yifan()
Received:
2020-07-28
Online:
2021-12-27
Published:
2022-07-25
Contact:
ZHANG Yifan
E-mail:zhang_yifan@126.com
摘要:
目的:探讨高剂量糖皮质激素(glucocorticoid,GC)对大鼠葡萄糖糖代谢的影响。方法:采用不同剂量(0~10 mg/kg)的地塞米松干预,选择合适的给药剂量。给予Wistar大鼠高剂量(10 mg/kg)地塞米松,观察高剂量GC对大鼠体重、空腹血糖、空腹胰岛素、糖耐量试验、胰岛素抵抗试验的影响。采用18F-氟代脱氧葡萄糖(fluorodeoxyglucose,FDG)正电子发射体层成像(positron emission tomography,PET)/CT显像,观察高剂量GC对大鼠骨骼肌、肝脏葡萄糖代谢的影响。结果:不同剂量的地塞米松均会引起糖代谢改变,其中10 mg/kg 给药剂量适用于该研究。10 mg/kg地塞米松干预后,大鼠体重明显降低[第0、3、7、11、15 天为(261±8)(226±8)(192±10)(172±10)(156±10) g,均P<0.000 1],空腹血糖[第0、3、7、11、15 天为(4.3±0.8)(14.4±5.2)(8.3±2.6)(9.8±4.4)(9.8±4.9) mmol/L,均P<0.05]和空腹胰岛素水平[第0、3、7、11、15天为(0.8±0.2)(11.6±1.1)(9.2±1.0)(9.2±2.4)(13.5±2.1) μg/L,均P<0.05]升高,血糖曲线下面积增加(第0、3、7、11、15天为858±26、2 350±345、1 680±331、1 352±166、1 553±217,均P<0.05),胰岛素敏感性降低(第0、3、7、11、15 天为1.26±0.18、0.51±0.09、0.91±0.18、0.77±0.16、0.50±0.16,均P<0.05)。骨骼肌FDG摄取增加(第0、3、7、11、15 天为0.10±0.01、0.15±0.03、0.20±0.02、0.28±0.02、0.27±0.03,均P<0.05),肝脏FDG摄取增加不明显,骨骼肌和肝脏糖原含量增加。结论:高剂量GC会引起明显的高血糖及高胰岛素血症。高胰岛素血症补偿了GC引起的骨骼肌胰岛素抵抗,不能完全补偿肝脏葡萄糖代谢缺陷。
中图分类号:
赵晴晴, 周金鑫, 潘昱, 琚卉君, 朱丽颖, 刘瑒, 张一帆. 高剂量糖皮质激素对大鼠糖代谢的影响[J]. 内科理论与实践, 2021, 16(06): 397-403.
ZHAO Qingqing, ZHOU Jinxin, PAN Yu, JU Huijun, ZHU Liying, LIU Yang, ZHANG Yifan. Effect of high-dose glucocorticoid on glucose metabolism in rats[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 397-403.
[1] |
Vandewalle J, Luypaert A, De Bosscher K, et al. Therapeutic mechanisms of glucocorticoids[J]. Trends Endocrinol Metab, 2018, 29(1): 42-54.
doi: 10.1016/j.tem.2017.10.010 URL |
[2] |
Oray M, Abu Samra K, et al. Long-term side effects of glucocorticoids[J]. Expert Opin Drug Saf, 2016, 15(4): 457-465.
doi: 10.1517/14740338.2016.1140743 URL |
[3] |
Liu XX, Zhu XM, Miao Q, et al. Hyperglycemia induced by glucocorticoids in nondiabetic patients[J]. Ann Nutr Metab, 2014, 65(4): 324-332.
doi: 10.1159/000365892 URL |
[4] |
Pivonello R, Isidori AM, De Martino MC, et al. Complications of Cushing’s syndrome: state of the art[J]. Lancet Diabetes Endocrinol, 2016, 4(7): 611-629.
doi: 10.1016/S2213-8587(16)00086-3 URL |
[5] |
Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor[J]. Diabetologia, 2005, 48(10): 2119-2130.
pmid: 16078016 |
[6] |
Ogawa A, Johnson JH, Ohneda M, et al. Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes[J]. J Clin Invest, 1992, 90(2): 497-504.
pmid: 1644920 |
[7] |
Buscombe J. Guidelines for the use of 18F-FDG in infection and inflammation: a new step in cooperation between the EANM and SNMMI[J]. Eur J Nucl Med Mol Imaging, 2013, 40(7): 1120-1121.
doi: 10.1007/s00259-013-2380-4 URL |
[8] |
Yang Y, Ma D, Wang Y, et al. Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes[J]. J Alzheimers Dis, 2013, 33(2): 329-338.
doi: 10.3233/JAD-2012-121294 pmid: 22936005 |
[9] |
Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, et al. Piper sarmentosum effects on 11β-hydroxysteroid dehydrogenase type 1 enzyme in serum and bone in rat model of glucocorticoid-induced osteoporosis[J]. Molecules, 2016, 21(11): 1523.
doi: 10.3390/molecules21111523 URL |
[10] |
Cao DS, Zhong L, Hsieh TH, et al. Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells[J]. PLoS One, 2012, 7(5): e38005.
doi: 10.1371/journal.pone.0038005 URL |
[11] | Protzek AO, Costa-Júnior JM, Rezende LF, et al. Augmented β-cell function and mass in glucocorticoid-treated rodents are associated with increased islet ir-β/AKT/mTOR and decreased AMPK/ACC and AS160 signaling[J]. Int J Endocrinol, 2014, 2014: 983453. |
[12] |
Pataky MW, Wang H, Yu CS, et al. High-fat diet-induced insulin resistance in single skeletal muscle fibers is fiber type selective[J]. Sci Rep, 2017, 7(1): 13642.
doi: 10.1038/s41598-017-12682-z pmid: 29057943 |
[13] |
Sun Y, Yu M, Liang S, et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node[J]. Biomaterials, 2011, 32(11): 2999-3007.
doi: 10.1016/j.biomaterials.2011.01.011 URL |
[14] |
Martínez BB, Pereira AC, Muzetti JH, et al. Experimental model of glucocorticoid-induced insulin resistance[J]. Acta Cir Bras, 2016, 31(10): 645-649.
doi: 10.1590/S0102-865020160100000001 URL |
[15] |
Thomas CR, Turner SL, Jefferson WH, et al. Prevention of dexamethasone-induced insulin resistance by metformin[J]. Biochem Pharmacol, 1998, 56(9): 1145-1150.
pmid: 9802324 |
[16] | Kuo T, McQueen A, Chen TC, et al. Regulation of glucose homeostasis by glucocorticoids[J]. Adv Exp Med Biol, 2015, 872: 99-126. |
[17] |
Pasieka AM, Rafacho A. Impact of glucocorticoid excess on glucose tolerance: clinical and preclinical evidence[J]. Metabolites, 2016, 6(3): 24.
doi: 10.3390/metabo6030024 URL |
[18] |
Wang LX, Wang YP, Chen Z, et al. Exendin-4 protects murine pancreatic β-cells from dexamethasone-induced apoptosis through PKA and PI-3K signaling[J]. Diabetes Res Clin Pract, 2010, 90(3): 297-304.
doi: 10.1016/j.diabres.2010.09.004 URL |
[19] |
van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options?[J]. Eur J Clin Invest, 2009, 39(2): 81-93.
doi: 10.1111/j.1365-2362.2008.02067.x pmid: 19200161 |
[20] |
Courty E, Besseiche A, Do TTH, et al. Adaptive β-cell neogenesis in the adult mouse in response to glucocorticoid-induced insulin resistance[J]. Diabetes, 2019, 68(1): 95-108.
doi: 10.2337/db17-1314 URL |
[21] |
Fine NHF, Doig CL, Elhassan YS, et al. Glucocorticoids reprogram β-cell signaling to preserve insulin secretion[J]. Diabetes, 2018, 67(2): 278-290.
doi: 10.2337/db16-1356 URL |
[22] |
Rafacho A, Abrantes JL, Ribeiro DL, et al. Morphofunctional alterations in endocrine pancreas of short- and long-term dexamethasone-treated rats[J]. Horm Metab Res, 2011, 43(4): 275-281.
doi: 10.1055/s-0030-1269896 pmid: 21225543 |
[23] |
Rafacho A, Cestari TM, Taboga SR, et al. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets[J]. Am J Physiol Endocrinol Metab, 2009, 296(4): E681-E689.
doi: 10.1152/ajpendo.90931.2008 URL |
[24] |
Barbot M, Ceccato F, Scaroni C. Diabetes mellitus secondary to Cushing’s disease front endocrinol[J]. Front Endocrinol (Lausanne), 2018, 9: 284.
doi: 10.3389/fendo.2018.00284 URL |
[25] |
Magomedova L, Cummins CL. Glucocorticoids and metabolic control[J]. Handb Exp Pharmacol, 2016, 233: 73-93.
doi: 10.1007/164_2015_1 pmid: 25917083 |
[26] |
Perez A, Jansen-Chaparro S, Saigi I, et al. Glucocorticoid-induced hyperglycemia[J]. J Diabetes, 2014, 6(1): 9-20.
doi: 10.1111/1753-0407.12090 URL |
[27] |
Nicod N, Giusti V, Besse C, et al. Metabolic adaptations to dexamethasone-induced insulin resistance in healthy volunteers[J]. Obes Res, 2003, 11(5): 625-631.
doi: 10.1038/oby.2003.90 URL |
[28] |
Burén J, Lai YC, Lundgren M, et al. Insulin action and signalling in fat and muscle from dexamethasone-treated rats[J]. Arch Biochem Biophys, 2008, 474(1): 91-101.
doi: 10.1016/j.abb.2008.02.034 pmid: 18328801 |
[29] |
Viglianti BL, Wong KK, Wimer SM, et al. Effect of hyperglycemia on brain and liver 18F-FDG standardized uptake value (FDG SUV) measured by quantitative positron emission tomography (PET) imaging[J]. Biomed Pharmacother, 2017, 88: 1038-1045.
doi: S0753-3322(17)30119-1 pmid: 28192877 |
[30] |
Sprinz C, Altmayer S, Zanon M, et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs[J]. PLoS One, 2018, 13(2): e0193140.
doi: 10.1371/journal.pone.0193140 URL |
[31] |
Scaroni C, Zilio M, Foti M, et al. Glucose metabolism abnormalities in cushing syndrome: from molecular basis to clinical management[J]. Endocr Rev, 2017, 38(3): 189-219.
doi: 10.1210/er.2016-1105 pmid: 28368467 |
[32] |
Kubota K, Watanabe H, Murata Y, et al. Effects of blood glucose level on FDG uptake by liver[J]. Nucl Med Biol, 2011, 38(3): 347-351.
doi: 10.1016/j.nucmedbio.2010.09.004 pmid: 21492783 |
[1] | 孙洪平, 陈国芳, 刘超. 植物性饮食与2型糖尿病的研究进展[J]. 内科理论与实践, 2022, 17(04): 349-352. |
[2] | 曹维, 陈柔柔, 谢媛, 邹婧, 赫荣波, 钱莉, 刘煜. 不同体质量指数多囊卵巢综合征患者内分泌代谢特征的临床研究[J]. 内科理论与实践, 2021, 16(06): 381-386. |
[3] | 朱雯, 邓婵娟, 代华杰, 禤立平, 李勉, 陈宇红, 张寅飞, 王卫庆, 毕宇芳, 徐敏, 郑昇,. 胰岛素抵抗指数与非酒精性脂肪性肝病肝纤维化进展程度的相关性研究[J]. 内科理论与实践, 2019, 14(06): 342-348. |
[4] | 张晟, 徐婷, 王霞, 张顺宵, 王华, 陈月,. 上海宝山地区糖尿病与非糖尿病人群中血清醛固酮水平差异及其与糖代谢相关性研究[J]. 内科理论与实践, 2019, 14(03): 178-182. |
[5] | 马驰野, 朱江帆, 马颖璋, 满琳, 陆伟, 张启颖, 张亚丽. 腹腔镜胃袖状切除术对肥胖型多囊卵巢综合征代谢的影响(附33例报告)[J]. 外科理论与实践, 2018, 23(06): 506-510. |
[6] | 郭传勇, 李静静,. 脂肪肝的治疗药物进展[J]. 内科理论与实践, 2017, 12(04): 236-239. |
[7] | 倪衡如, 林琳, 彭魁, 郝明丽, 王天歌, 高金丽. 上海社区人群代谢健康型肥胖、胰岛素抵抗与糖尿病发病风险的相关性研究[J]. 诊断学理论与实践, 2017, 16(04): 419-424. |
[8] | 高婧, 周莉, 石娟, 洪洁, 陈慧, 陈晨,. 多囊卵巢综合征患者胰岛素抵抗的新指标评估研究[J]. 诊断学理论与实践, 2016, 15(04): 415-420. |
[9] | 林青, 李嫣然, 高利红, 吴方,. 维生素D缺乏对老年糖耐量异常患者胰岛素抵抗的影响[J]. 内科理论与实践, 2015, 10(06): 424-427. |
[10] | 陈淳, 王家莉, 季承博, 布阿提卡木, 彭亦雩, 傅毅,. 抵抗素与脑梗死及其危险因素的相关性研究[J]. 诊断学理论与实践, 2015, 14(03): 279-282. |
[11] | 徐业凯,袁斯明,郭遥,崔磊,洪志坚,姜会庆. 病灶内注射糖皮质激素和口服普萘洛尔治疗眶周血管瘤的回顾性研究[J]. 组织工程与重建外科杂志, 2014, 10(4): 183-186. |
[12] | 孙慧平, 陈颖, 范青叶, 王瑾, 糜坚青, 李军民,. 低剂量与传统剂量糖皮质激素治疗成人原发免疫性血小板减少症疗效和安全性比较[J]. 内科理论与实践, 2014, 9(06): 403-406. |
[13] | 陶婷, 吴霖, 谢雨苏, 吴方,. 老年男性非酒精性脂肪肝患者血清胎球蛋白A水平的变化[J]. 内科理论与实践, 2014, 9(05): 325-327. |
[14] | 宋科秀, 曲伸,. 非酒精性脂肪性肝病线粒体相关的分子通路[J]. 诊断学理论与实践, 2014, 13(02): 125-128. |
[15] | 李敏, 顾晨鹃,. 阻塞性睡眠呼吸暂停低通气综合征与2型糖尿病[J]. 内科理论与实践, 2014, 9(02): 85-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||