内科理论与实践 ›› 2021, Vol. 16 ›› Issue (06): 422-426.doi: 10.16138/j.1673-6087.2021.06.011
收稿日期:
2021-03-30
出版日期:
2021-12-27
发布日期:
2022-07-25
通讯作者:
陈国芳,刘超
E-mail:chenguofang9801@126.com;liuchao@nfmcn.com
基金资助:
Received:
2021-03-30
Online:
2021-12-27
Published:
2022-07-25
中图分类号:
韦晓, 孙烁烁, 陈国芳, 刘超. 表观遗传修饰:糖尿病防治新靶点[J]. 内科理论与实践, 2021, 16(06): 422-426.
[1] |
Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes[J]. Cell Metab, 2019, 29(5): 1028-1044.
doi: 10.1016/j.cmet.2019.03.009 URL |
[2] |
Feinberg AP. The key role of epigenetics in human disease prevention and mitigation[J]. N Engl J Med, 2018, 378(14): 1323-1334.
doi: 10.1056/NEJMra1402513 URL |
[3] |
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6): 327-345.
doi: 10.1038/s41581-019-0135-6 URL |
[4] |
Rosen ED, Kaestner KH, Natarajan R, et al. Epigenetics and epigenomics: implications for diabetes and obesity[J]. Diabetes, 2018, 67(10): 1923-1931.
doi: 10.2337/db18-0537 pmid: 30237160 |
[5] | Singh R, Chandel S, Dey D, et al. Epigenetic modification and therapeutic targets of diabetes mellitus[J]. Biosci Rep, 2020, 40(9): BSR20202160. |
[6] |
Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 590-607.
doi: 10.1038/s41580-019-0159-6 URL |
[7] |
Johnson ND, Conneely KN. The role of DNA methylation and hydroxymethylation in immunosenescence[J]. Ageing Res Rev, 2019, 51: 11-23.
doi: 10.1016/j.arr.2019.01.011 URL |
[8] |
Xu GL, Bochtler M. Reversal of nucleobase methylation by dioxygenases[J]. Nat Chem Biol, 2020, 16(11): 1160-1169.
doi: 10.1038/s41589-020-00675-5 URL |
[9] |
Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity[J]. Nature, 2017, 541(7635): 81-86.
doi: 10.1038/nature20784 URL |
[10] |
Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study[J]. Lancet Diabetes Endocrinol, 2015, 3(7): 526-534.
doi: 10.1016/S2213-8587(15)00127-8 URL |
[11] |
Paul DS, Teschendorff AE, Dang MA, et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types[J]. Nat Commun, 2016, 7: 13555.
doi: 10.1038/ncomms13555 URL |
[12] |
Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children[J] JCI Insight, 2018, 3(17): e122572.
doi: 10.1172/jci.insight.122572 URL |
[13] |
Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics[J]. Nat Rev Genet, 2017, 18(1): 51-66.
doi: 10.1038/nrg.2016.138 pmid: 27867193 |
[14] |
Bates SE. Epigenetic therapies for cancer[J]. N Engl J Med, 2020, 383(7): 650-663.
doi: 10.1056/NEJMra1805035 URL |
[15] |
Gao M, Deng XL, Liu ZH, et al. Liraglutide protects β-cell function by reversing histone modification of Pdx-1 proximal promoter in catch-up growth male rats[J]. J Diabetes Complications, 2018, 32(11): 985-994.
doi: 10.1016/j.jdiacomp.2018.08.002 URL |
[16] |
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156.
doi: 10.1126/science.aao5774 URL |
[17] |
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6): 1306-1313.
doi: 10.1002/jcb.22644 pmid: 20564224 |
[18] |
Hong S, Zhou W, Fang B, et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion[J]. Nat Med, 2017, 23(2): 223-234.
doi: 10.1038/nm.4245 URL |
[19] |
Asif S, Morrow NM, Mulvihill EE, et al. Understanding dietary intervention-mediated epigenetic modifications in metabolic diseases[J]. Front Genet, 2020, 11: 590369.
doi: 10.3389/fgene.2020.590369 URL |
[20] |
Calderon D, Nguyen MLT, Mezger A, et al. Landscape of stimulation-responsive chromatin across diverse human immune cells[J]. Nat Genet, 2019, 51(10): 1494-1505.
doi: 10.1038/s41588-019-0505-9 pmid: 31570894 |
[21] |
Wei Z, Yoshihara E, He N, et al. Vitamin D switches BAF complexes to protect β cells[J]. Cell, 2018, 173(5): 1135-1149.
doi: 10.1016/j.cell.2018.04.013 URL |
[22] |
Local A, Huang H, Albuquerque CP, et al. Identification of H3K4me1-associated proteins at mammalian enhancers[J]. Nat Genet, 2018, 50(1): 73-82.
doi: 10.1038/s41588-017-0015-6 URL |
[23] |
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes[J]. Cell Metab, 2020, 32(5): 844-859.
doi: 10.1016/j.cmet.2020.08.007 pmid: 32888406 |
[24] | Skvortsova K, Iovino N, Bogdanoviéc O. Functions and mechanisms of epigenetic inheritance in animals[J]. Nat Rev Mol Cell Biol, 2018, 19(12): 774-790. |
[25] |
Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004, 432(7014): 226-230.
doi: 10.1038/nature03076 URL |
[26] |
Al-Muhtaresh HA, Al-Kafaji G. Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus[J]. J Clin Med, 2018, 7(2): 12.
doi: 10.3390/jcm7020012 URL |
[27] |
López-Beas J, Capilla-González V, Aguilera Y, et al. miR-7 modulates hESC differentiation into insulin-producing beta-like cells and contributes to cell maturation[J]. Mol Ther Nucleic Acids, 2018, 12: 463-477.
doi: 10.1016/j.omtn.2018.06.002 URL |
[28] |
Belgardt BF, Ahmed K, Spranger M, et al. The micro-RNA-200 family regulates pancreatic beta cell survival in type 2 diabetes[J]. Nat Med, 2015, 21(6): 619-627.
doi: 10.1038/nm.3862 URL |
[29] |
Huang Q, You W, Li Y, et al. Glucolipotoxicity-inhibited miR-299-5p regulates pancreatic β-cell function and survival[J]. Diabetes, 2018, 67(11): 2280-2292.
doi: 10.2337/db18-0223 URL |
[30] |
Sui M, Chen G, Mao X, et al. Gegen qinlian decoction ameliorates hepatic insulin resistance by silent information regulator1 (SIRT1)-dependent deacetylation of forkhead box O1(FOXO1)[J]. Med Sci Monit, 2019, 25: 8544-8553.
doi: 10.12659/MSM.919498 URL |
[31] |
Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13): 11837-11848.
doi: 10.1074/jbc.M110.194969 URL |
[32] |
Guo Z, Cao Q, Zhao Z, et al. Biogenesis, features, functions, and disease relationships of a specific circular RNA: CDR1as[J]. Aging Dis, 2020, 11(4): 1009-1020.
doi: 10.14336/AD.2019.0920 URL |
[33] | Shi R, Chen Y, Liao Y, et al. Research status of differentially expressed noncoding RNAs in type 2 diabetes patients[J]. Biomed Res Int, 2020, 2020: 3816056. |
[34] |
Akerman I, Tu Z, Beucher A, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks[J]. Cell Metab, 2017, 25(2): 400-411.
doi: S1550-4131(16)30595-2 pmid: 28041957 |
[35] |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200.
doi: S0092-8674(17)30638-4 pmid: 28622506 |
[36] |
Wang Y, Sun J, Lin Z, et al. m6A mRNA methylation controls functional maturation in neonatal murine β-cells[J]. Diabetes, 2020, 69(8): 1708-1722.
doi: 10.2337/db19-0906 URL |
[37] |
Li X, Jiang Y, Sun X, et al. METTL3 is required for maintaining β-cell function[J]. Metabolism, 2021, 116: 154702.
doi: 10.1016/j.metabol.2021.154702 URL |
[38] |
Li Y, Zhang Q, Cui G, et al. m6A regulates liver metabolic disorders and hepatogenous diabetes[J]. Genomics Proteomics Bioinformatics, 2020, 18(4): 371-383.
doi: 10.1016/j.gpb.2020.06.003 URL |
[39] |
Cencioni C, Spallotta F, Greco S, et al. Epigenetic mechanisms of hyperglycemic memory[J]. Int J Biochem Cell Biol, 2014, 51: 155-158.
doi: 10.1016/j.biocel.2014.04.014 pmid: 24786298 |
[40] |
Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011, 474(7353): 649-653.
doi: 10.1038/nature10112 URL |
[41] |
Shen W, Tremblay MS, Deshmukh VA, et al. Small-molecule inducer of β cell proliferation identified by high-throughput screening[J]. J Am Chem Soc, 2013, 135(5): 1669-1672.
doi: 10.1021/ja309304m URL |
[42] |
Song MY, Kim EK, Moon WS, et al. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-κB pathway[J]. Toxicol Appl Pharmacol, 2009, 235(1): 57-67.
doi: 10.1016/j.taap.2008.11.007 URL |
[43] |
Liu X, Liu J, Xiao W, et al. SIRT1 Regulates N6-methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation[J]. Hepatology, 2020, 72(6): 2029-2050.
doi: 10.1002/hep.31222 URL |
[1] | 卜凡玉 郭晓峰 徐鹏 王进 薛明宇 潘筱云. 抗生素骨水泥联合其他综合干预措施治疗糖尿病足骨髓炎[J]. 组织工程与重建外科杂志, 2022, 18(4): 328-. |
[2] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[3] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[4] | 孙洪平, 陈国芳, 刘超. 植物性饮食与2型糖尿病的研究进展[J]. 内科理论与实践, 2022, 17(04): 349-352. |
[5] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下糖尿病管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 136-138. |
[6] | 陈煦阳, 顾卫琼. 胰岛素自身抗体临床检测应用局限及对策研究进展[J]. 诊断学理论与实践, 2022, 21(01): 95-98. |
[7] | 张雪,刘晨光. 能否人为控制表观遗传的调控?[J]. 上海交通大学学报, 2021, 55(Sup.1): 32-33. |
[8] | 王永灵 廖明娟 李琰 蒉纲. 阳和汤加减内服结合负压技术治疗糖尿病足[J]. 组织工程与重建外科杂志, 2021, 17(5): 426-. |
[9] | 廉洁 秦金保 祝联. 石墨烯泡沫支架缓释 netrin-1 促进糖尿病大鼠创面愈合的研究 [J]. 组织工程与重建外科杂志, 2021, 17(3): 186-. |
[10] | 李伟 刘涛 李霞 王巧云 白小岗 李哲玺. 载绞股蓝皂苷纳米结构脂质载体对 DF 大鼠创面愈合及 ET-CGRP 平衡的影响[J]. 组织工程与重建外科杂志, 2021, 17(3): 199-. |
[11] | 王广宇, 杨昕, 张立娟, 谭姣容. 住院新诊断2型糖尿病男性患者血浆总睾酮水平与骨钙素的相关性研究[J]. 诊断学理论与实践, 2021, 20(06): 573-578. |
[12] | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16(06): 373-375. |
[13] | 孙艳, 代丹娇, 陈智伟, 张华清. 卡格列净对早期糖尿病肾病尿白蛋白/肌酐比值和尿足细胞相关蛋白裂隙素的影响[J]. 内科理论与实践, 2021, 16(06): 387-391. |
[14] | 高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421. |
[15] | 缪雅, 杨玉琳, 朱怡洁, 盛长生, 田景琰. 糖化血红蛋白变异性与糖尿病微血管并发症关系的研究进展[J]. 内科理论与实践, 2021, 16(06): 427-430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||