内科理论与实践 ›› 2024, Vol. 19 ›› Issue (02): 130-135.doi: 10.16138/j.1673-6087.2024.02.08
收稿日期:
2023-08-10
出版日期:
2024-04-30
发布日期:
2024-07-08
通讯作者:
吴文君
E-mail:wuwenjung@163.com
基金资助:
ZHU Xiaowen1, WANG Hongchao2, WU Wenjun1()
Received:
2023-08-10
Online:
2024-04-30
Published:
2024-07-08
Contact:
WU Wenjun
E-mail:wuwenjung@163.com
摘要:
阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是一种常见的以间歇性缺氧和睡眠片段化为主要病理特征的睡眠障碍性疾病,与高血压、动脉粥样硬化、胰岛素抵抗等多种代谢疾病的发生、发展关系密切。大量研究已发现OSA会引起肠道菌群紊乱从而对人体健康产生影响。本文就临床与动物模型中OSA引起肠道菌群紊乱以及相关代谢和心血管变化的可能机制以及由此衍生的辅助治疗新方法进行综述,旨在以肠道菌群为切入点,重新认识OSA和代谢及心血管异常之间的关系,为OSA及相关并发症的早期干预提供新思路。
中图分类号:
朱晓雯, 王鸿超, 吴文君. 肠道菌群介导阻塞性睡眠呼吸暂停患者代谢及心血管异常的作用及相关机制进展[J]. 内科理论与实践, 2024, 19(02): 130-135.
ZHU Xiaowen, WANG Hongchao, WU Wenjun. Role of gut microbiota in mediating metabolic and cardiovascular abnormalities in patients with obstructive sleep apnea and related mechanisms[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(02): 130-135.
[1] | Rajesh S, Wonderling D, Simonds AK. Obstructive sleep apnoea/hypopnoea syndrome and obesity hyperventilation syndrome in over 16s: summary of NICE guidance[J]. BMJ, 2021,375:n2360. |
[2] | Carneiro-Barrera A, Amaro-Gahete FJ, Guillén-Riquelme A, et al. Effect of an interdisciplinary weight loss and lifestyle intervention on obstructive sleep apnea severity[J]. JAMA Netw Open, 2022, 5(4):e228212. |
[3] | Carneiro G, Zanella MT. Obesity metabolic and hormonal disorders associated with obstructive sleep apnea and their impact on the risk of cardiovascular events[J]. Metabolism, 2018,84:76-84. |
[4] | Fang Y, Su J, Zhao C, et al. Association between nontraditional lipid profiles and the severity of obstructive sleep apnea[J]. J Clin Lab Anal, 2023, 37(17-18):e24499. |
[5] |
Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition[J]. Nat Microbiol, 2018, 3(1):8-16.
doi: 10.1038/s41564-017-0072-8 pmid: 29255284 |
[6] | Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea[J]. Expert Opin Ther Targets, 2020, 24(12):1263-1282. |
[7] | 王利娟, 杨冲, 窦占军, 等. 不同严重程度阻塞性睡眠呼吸暂停低通气患者肠道菌群特征初步分析[J]. 中华结核和呼吸杂志, 2021, 44(6):543-549. |
[8] | Lu D, Xu S, Dai P, et al. Gut microbiota in hypertensive patients with versus without obstructive sleep apnea[J]. J Clin Hypertens (Greenwich), 2022, 24(12):1598-1605. |
[9] | Valentini F, Evangelisti M, Arpinelli M, et al. Gut microbiota composition in children with obstructive sleep apnoea syndrome[J]. Sleep Med, 2020,76:140-147. |
[10] | Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities[J]. Clin Sci (Lond), 2019, 133(7):905-917. |
[11] | Bikov A, Szabo H, Piroska M, et al. Gut microbiome in patients with obstructive sleep apnoea[J]. Applied Sciences, 2022, 12(4):2007. |
[12] | Li Q, Xu T, Zhong H, et al. Impaired intestinal barrier in patients with obstructive sleep apnea[J]. Sleep Breath, 2021, 25(2):749-756. |
[13] |
Moreno-Indias I, Torres M, Montserrat JM, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea[J]. Eur Respir J, 2015, 45(4):1055-1065.
doi: 10.1183/09031936.00184314 pmid: 25537565 |
[14] | Tripathi A, Melnik AV, Xue J, et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome[J]. mSystems, 2018, 3(3):e00020-e00118. |
[15] | Khalyfa A, Ericsson A, Qiao Z, et al. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia[J]. EBioMedicine, 2021,64:103208. |
[16] | Wang F, Zou J, Xu H, et al. Effects of chronic intermittent hypoxia and chronic sleep fragmentation on gut microbiome, serum metabolome, liver and adipose tissue morphology[J]. Front Endocrinol (Lausanne), 2022,13:820939. |
[17] | Conotte S, Tassin A, Conotte R, et al. Metabonomic profiling of chronic intermittent hypoxia in a mouse model[J]. Respir Physiol Neurobiol, 2018,256:157-173. |
[18] | 陈前程, 王红阳, 董爱英, 等. 间歇低氧对大鼠肠道细菌移位发生及肠系膜淋巴结结构的影响[J]. 中华结核和呼吸杂志, 2021, 44(1):32-37. |
[19] | Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota[J]. Sleep Med Rev, 2020,53:101340. |
[20] | Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice[J]. Sci Rep, 2016,6:35405. |
[21] |
Triplett J, Ellis D, Braddock A, et al. Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats[J]. Gut Microbes, 2020, 11(4):706-720.
doi: 10.1080/19490976.2019.1701352 pmid: 31924109 |
[22] | Sanford LD, Wellman LL, Ciavarra RP, et al. Differential effect of light and dark period sleep fragmentation on composition of gut microbiome and inflammation in mice[J]. Life (Basel), 2021, 11(12):1283. |
[23] |
Durgan DJ. Obstructive sleep apnea-induced hypertension[J]. Curr Hypertens Rep, 2017, 19(4):35.
doi: 10.1007/s11906-017-0732-3 pmid: 28365886 |
[24] |
Durgan DJ, Ganesh BP, Cope JL, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension[J]. Hypertension, 2016, 67(2):469-474.
doi: 10.1161/HYPERTENSIONAHA.115.06672 pmid: 26711739 |
[25] |
Ganesh BP, Nelson JW, Eskew JR, et al. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea[J]. Hypertension, 2018, 72(5):1141-1150.
doi: 10.1161/HYPERTENSIONAHA.118.11695 pmid: 30354816 |
[26] | Xu J, Moore BN, Pluznick JL. Short-chain fatty acid receptors and blood pressure regulation[J]. Hypertension, 2022, 79(10):2127-2137. |
[27] |
Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10):964-977.
doi: 10.1161/CIRCULATIONAHA.116.024545 pmid: 27927713 |
[28] | Ayyaswamy S, Shi H, Zhang B, et al. Obstructive sleep apnea-induced hypertension is associated with increased gut and neuroinflammation[J]. J Am Heart Assoc, 2023, 12(11):e029218. |
[29] |
Richards EM, Li J, Stevens BR, et al. Gut microbiome and neuroinflammation in hypertension[J]. Circ Res, 2022, 130(3):401-417.
doi: 10.1161/CIRCRESAHA.121.319816 pmid: 35113664 |
[30] | Badran M, Khalyfa A, Ericsson A, et al. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice[J]. Exp Neurol, 2020,334:113439. |
[31] | Badran M, Khalyfa A, Ericsson AC, et al. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics[J]. Eur Respir J, 2023, 61(1):2200002. |
[32] | Liu M, Han Q, Yang J. Trimethylamine-N-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats[J]. Clin Exp Hypertens, 2019, 41(4):312-322. |
[33] | Jiang S, Shui Y, Cui Y, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin Ⅱ-induced hypertension[J]. Redox Biol, 2021,46:102115. |
[34] | Hu C, Wang P, Yang Y, et al. Chronic intermittent hypoxia participates in the pathogenesis of atherosclerosis and perturbs the formation of intestinal microbiota[J]. Front Cell Infect Microbiol, 2021,11:560201. |
[35] | Allaband C, Lingaraju A, Martino C, et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome[J]. mSystems, 2021, 6(3):e0011621. |
[36] |
Moreno-Indias I, Torres M, Sanchez-Alcoholado L, et al. Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice[J]. Sleep, 2016, 39(10):1891-1897.
pmid: 27397563 |
[37] | Feng J, Jiang W, Cheng X, et al. A host lipase prevents lipopolysaccharide-induced foam cell formation[J]. iScience, 2021, 24(9):103004. |
[38] | Canyelles M, Borràs C, Rotllan N, et al. Gut microbiota-derived TMAO[J]. Int J Mol Sci, 2023, 24(3):1940. |
[39] | Xue J, Zhou D, Poulsen O, et al. Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-oxide[J]. Am J Respir Cell Mol Biol, 2017, 57(5):581-588. |
[40] | Tang SS, Liang CH, Liu YL, et al. Intermittent hypoxia is involved in gut microbial dysbiosis in type 2 diabetes mellitus and obstructive sleep apnea-hypopnea syndrome[J]. World J Gastroenterol, 2022, 28(21):2320-2333. |
[41] | Zhang Y, Luo H, Niu Y, et al. Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice[J]. Sleep Med, 2022,91:84-92. |
[42] |
Mashaqi S, Gozal D. Obstructive sleep apnea and systemic hypertension[J]. J Clin Sleep Med, 2019, 15(10):1517-1527.
doi: 10.5664/jcsm.7990 pmid: 31596218 |
[43] |
Xu H, Wang J, Cai J, et al. Protective effect of lactobacillus rhamnosus GG and its supernatant against myocardial dysfunction in obese mice exposed to intermittent hypoxia is associated with the activation of Nrf2 pathway[J]. Int J Biol Sci, 2019, 15(11):2471-2483.
doi: 10.7150/ijbs.36465 pmid: 31595164 |
[44] | Liu J, Li T, Wu H, et al. Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced hypertension in a high salt diet via regulating TMAO level and CD4+ T cell induced-type Ⅰ inflammation[J]. Biomed Pharmacother, 2019,112:108580. |
[1] | 武梦梦, 杨福燕, 刘雨辰, 鲁旭柯, 高静歌, 叶紫灵. 维持性血液透析的2型糖尿病肾病患者并发肌少症的相关因素分析[J]. 内科理论与实践, 2024, 19(02): 102-106. |
[2] | 白媛媛, 霍丽丽, 李伟, 兰玲, 邓微. 围手术期2型糖尿病患者胰岛素泵治疗期间低血糖发生情况及其危险因素分析[J]. 内科理论与实践, 2024, 19(02): 126-129. |
[3] | 吴菊蕾, 毛莉华, 余婷婷, 林丛, 缪语, 朱小霞, 曹灵. 痛风与高尿酸血症患者膳食方式新理念[J]. 内科理论与实践, 2024, 19(02): 144-148. |
[4] | 陈俊秀, 石群, 秦利, 吴一鸣. 2型糖尿病患者甲状腺激素水平与心功能的相关性研究[J]. 内科理论与实践, 2024, 19(02): 95-101. |
[5] | 李媛媛, 金晨昱, 方舒东, 支延康. 超声测量应用于OSAHS病人困难喉镜暴露评估[J]. 外科理论与实践, 2024, 29(02): 156-160. |
[6] | 缪婕, 王巍, 赵雅洁, 张凤如, 沈琳辉. 老年男性2型糖尿病患者游离三碘甲状腺原氨酸水平与左心室舒张功能不全相关[J]. 诊断学理论与实践, 2024, 23(02): 155-161. |
[7] | 周思锋, 朱洁云, 徐海舒, 倪瑛. 色素上皮衍生因子在糖尿病视网膜病变中的作用机制研究进展[J]. 诊断学理论与实践, 2024, 23(02): 192-201. |
[8] | 郑晓燕, 易华华, 周敏. 糖尿病合并肺部感染临床诊治中需要关注的问题[J]. 内科理论与实践, 2024, 19(01): 13-18. |
[9] | 黄仙娜, 陈云册, 周敏, 倪磊. 糖尿病患者合并新型冠状病毒感染的研究进展[J]. 内科理论与实践, 2024, 19(01): 77-81. |
[10] | 张琼, 吴彦霖, 胡起维, 张泽伟, 黄守约. 光学相干断层扫描血管成像参数诊断非增殖性糖尿病视网膜病变的价值分析[J]. 诊断学理论与实践, 2024, 23(01): 67-76. |
[11] | 刘陈肖笑, 简扬, 张演基, 等.
基于抗生素骨水泥的糖尿病足溃疡治疗策略研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(6): 591-. |
[12] | 林崴仪, 戈成旺, 唐枭伟, 等. 阿克曼嗜黏液菌外膜蛋白 1100 促进糖尿病大鼠创面愈合 [J]. 组织工程与重建外科杂志, 2023, 19(4): 358-. |
[13] | 何美娟, 何嫣婕, 王韵, 朱春雪, 黄汉鹏. M2型巨噬细胞来源的小细胞外囊泡抑制内质网应激减轻慢性间歇性缺氧诱导的H9C2心肌细胞损伤[J]. 内科理论与实践, 2023, 18(06): 416-423. |
[14] | 刘冲霄, 黄松, 贝鹏剑, 徐艳红, 李晓华, 张宏利. 以胆管炎为首发表现的肝内胆管错构瘤合并2型糖尿病1例[J]. 内科理论与实践, 2023, 18(06): 436-438. |
[15] | 黄元灏, 沈媛媛, 韩涛, 张冰青, 冯文焕. 葡萄糖在目标范围内时间与糖尿病慢性并发症[J]. 内科理论与实践, 2023, 18(05): 359-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||