内科理论与实践 ›› 2023, Vol. 18 ›› Issue (04): 261-265.doi: 10.16138/j.1673-6087.2023.04.010
收稿日期:
2023-05-24
出版日期:
2023-08-30
发布日期:
2024-01-09
通讯作者:
王卫庆 E-mail: 基金资助:
Received:
2023-05-24
Online:
2023-08-30
Published:
2024-01-09
中图分类号:
蒋怡然, 王卫庆. 原发性醛固酮增多症的分子机制研究进展[J]. 内科理论与实践, 2023, 18(04): 261-265.
JIANG Yiran, WANG Weiqing. Research progress on molecular mechanism of primary aldosteronism[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(04): 261-265.
[1] |
Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension[J]. Science, 2011, 331(6018): 768-772.
doi: 10.1126/science.1198785 URL |
[2] |
Fernandes-Rosa FL, Williams TA, Riester A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma[J]. Hypertension, 2014, 64(2): 354-361.
doi: 10.1161/HYPERTENSIONAHA.114.03419 pmid: 24866132 |
[3] |
Lenzini L, Rossitto G, Maiolino G, et al. A meta-analysis of somatic KCNJ5 K+ channel mutations in 1636 patients with an aldosterone-producing adenoma[J]. J Clin Endocrinol Metab, 2015, 100(8): E1089-E1095.
doi: 10.1210/jc.2015-2149 URL |
[4] | Taguchi R, Yamada M, Nakajima Y, et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas[J]. J Clin Endocr-inol Metab, 2012, 97(4): 1311-1319. |
[5] |
Zheng FF, Zhu LM, Nie AF, et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma[J]. Hypertension, 2015, 65(3): 622-628.
doi: 10.1161/HYPERTENSIONAHA.114.03346 URL |
[6] |
Cao Y, Zhou W, Li L, et al. Pan-cancer analysis of somatic mutations across 21 neuroendocrine tumor types[J]. Cell Res, 2018, 28(5): 601-604.
doi: 10.1038/s41422-018-0019-5 pmid: 29507395 |
[7] |
De Sousa K, Boulkroun S, Baron S, et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma[J]. Hypertension, 2020, 75(4): 1034-1044.
doi: 10.1161/HYPERTENSIONAHA.119.14177 pmid: 32114847 |
[8] |
Zhang C, Wu L, Jiang L, et al. KCNJ5 mutation contributes to complete clinical success in aldosterone-producing adenoma[J]. Endocr Pract, 2021, 27(7): 736-742.
doi: 10.1016/j.eprac.2021.01.007 pmid: 33678553 |
[9] |
Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism[J]. J Clin Endocrinol Metab, 2008, 93(8): 3117-3123.
doi: 10.1210/jc.2008-0594 URL |
[10] |
Mulatero P, Monticone S, Rainey WE, et al. Role of KCNJ5 in familial and sporadic primary aldosteronism[J]. Nat Rev Endocrinol, 2013, 9(2): 104-112.
doi: 10.1038/nrendo.2012.230 pmid: 23229280 |
[11] |
Scholl UI, Abriola L, Zhang C, et al. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma[J]. J Clin Invest, 2017, 127(7): 2739-2750.
doi: 10.1172/JCI91733 pmid: 28604387 |
[12] |
Maiolino G, Ceolotto G, Battistel M, et al. Macrolides for KCNJ5-mutated aldosterone-producing adenoma (MAPA): design of a study for personalized diagnosis of primary aldosteronism[J]. Blood Press, 2018, 27(4): 200-205.
doi: 10.1080/08037051.2018.1436961 URL |
[13] |
Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension[J]. Nat Genet, 2013, 45(9): 1055-1060.
doi: 10.1038/ng.2716 pmid: 23913004 |
[14] |
Scholl UI, Goh G, Stölting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism[J]. Nat Genet, 2013, 45(9): 1050-1054.
doi: 10.1038/ng.2695 pmid: 23913001 |
[15] |
Nanba K, Omata K, Else T, et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans[J]. J Clin Endocrinol Metab, 2018, 103(10): 3869-3876.
doi: 10.1210/jc.2018-01004 pmid: 30085035 |
[16] |
Nanba K, Omata K, Gomez-Sanchez CE, et al. Genetic characteristics of aldosterone-producing adenomas in Blacks[J]. Hypertension, 2019, 73(4): 885-892.
doi: 10.1161/HYPERTENSIONAHA.118.12070 pmid: 30739536 |
[17] |
Pinggera A, Mackenroth L, Rump A, et al. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy[J]. Hum Mol Genet, 2017, 26(15): 2923-2932.
doi: 10.1093/hmg/ddx175 pmid: 28472301 |
[18] |
Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism[J]. Elife, 2015, 4: e06315.
doi: 10.7554/eLife.06315 URL |
[19] |
Daniil G, Fernandes-Rosa FL, Chemin J, et al. CACNA1H mutations are associated with different forms of primary aldosteronism[J]. EBioMedicine, 2016, 13: 225-236.
doi: S2352-3964(16)30457-1 pmid: 27729216 |
[20] |
Nanba K, Blinder AR, Rege J, et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma[J]. Hypertension, 2020, 75(3): 645-649.
doi: 10.1161/HYPERTENSIONAHA.119.14349 URL |
[21] |
Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension[J]. Nat Genet, 2013, 45(4): 440-444.
doi: 10.1038/ng.2550 pmid: 23416519 |
[22] | Tauber P, Aichinger B, Christ C, et al. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3[J]. ndocrinology, 2016, 157(6): 2489-2499. |
[23] |
Stowasser M, Gordon RD. Familial hyperaldosteronism[J]. J Steroid Biochem Mol Biol, 2001, 78(3): 215-229.
doi: 10.1016/S0960-0760(01)00097-8 URL |
[24] |
Scholl UI, Stölting G, Schewe J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type Ⅱ[J]. Nat Genet, 2018, 50(3): 349-354.
doi: 10.1038/s41588-018-0048-5 pmid: 29403011 |
[25] |
Fernandes-Rosa FL, Daniil G, Orozco IJ, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism[J]. Nat Genet, 2018, 50(3): 355-361.
doi: 10.1038/s41588-018-0053-8 pmid: 29403012 |
[26] |
Åkerström T, Maharjan R, Sven Willenberg H, et al. Activating mutations in CTNNB1 in aldosterone producing adenomas[J]. Sci Rep, 2016, 6: 19546.
doi: 10.1038/srep19546 pmid: 26815163 |
[27] | Berthon A, Drelon C, Val P. Pregnancy, primary aldo-steronism, and somatic CTNNB1 mutations[J]. N Engl J Med, 2016, 374(15): 1493-1494. |
[28] |
Rhayem Y, Perez-Rivas LG, Dietz A, et al. PRKACA somatic mutations are rare findings in aldosterone-producing adenomas[J]. J Clin Endocrinol Metab, 2016, 101(8): 3010-3017.
doi: 10.1210/jc.2016-1700 pmid: 27270477 |
[29] |
Zilbermint M, Xekouki P, Faucz FR, et al. Primary aldosteronism and ARMC5 variants[J]. J Clin Endocrinol Metab, 2015, 100(6): E900-E999.
doi: 10.1210/jc.2014-4167 URL |
[30] |
Mulatero P, Schiavi F, Williams TA, et al. ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions[J]. J Hum Hypertens, 2016, 30(6): 374-378.
doi: 10.1038/jhh.2015.98 pmid: 26446392 |
[31] |
Nishimoto K, Nakagawa K, Li D, et al. Adrenocortical zonation in humans under normal and pathological conditions[J]. J Clin Endocrinol Metab, 2010, 95(5): 2296-2305.
doi: 10.1210/jc.2009-2010 pmid: 20200334 |
[32] | Nishimoto K, Tomlins SA, Kuick R, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands[J]. Proc Natl Acad Sci U S A, 2015, 112(33): E4591-E4599. |
[33] |
Nishimoto K, Koga M, Seki T, et al. Immunohistoche-mistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism[J]. Mol Cell Endocrinol, 2017, 441: 124-133.
doi: S0303-7207(16)30422-1 pmid: 27751767 |
[34] |
Fernandes-Rosa FL, Giscos-Douriez I, Amar L, et al. Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma[J]. Hypertension, 2015, 66(5): 1014-1022.
doi: 10.1161/HYPERTENSIONAHA.115.05993 pmid: 26351028 |
[35] |
Davies LA, Hu C, Guagliardo NA, et al. TASK channel deletion in mice causes primary hyperaldosteronism[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2203-2208.
doi: 10.1073/pnas.0712000105 URL |
[36] |
Guagliardo NA, Yao J, Hu C, et al. TASK-3 channel deletion in mice recapitulates low-renin essential hypertension[J]. Hypertension, 2012, 59(5): 999-1005.
doi: 10.1161/HYPERTENSIONAHA.111.189662 pmid: 22493079 |
[37] |
Penton D, Bandulik S, Schweda F, et al. Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension[J]. Endocrinology, 2012, 153(10): 4740-4748.
pmid: 22878402 |
[38] | Seidel E, Schewe J, Zhang J, et al. Enhanced Ca2+ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (Cacna1hM1560V/+)[J]. Proc Natl Acad Sci U S A, 2021, 118(17): e2014876118. |
[39] |
Schewe J, Seidel E, Forslund S, et al. Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation[J]. Nat Commun, 2019, 10(1): 5155.
doi: 10.1038/s41467-019-13033-4 pmid: 31727896 |
[40] |
Göppner C, Orozco IJ, Hoegg-Beiler MB, et al. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism[J]. Nat Commun, 2019, 10(1): 4678.
doi: 10.1038/s41467-019-12113-9 pmid: 31615979 |
[1] | 赵一菲 邹运 陈辉 林晓曦.
先天性黑素细胞痣基因突变类型分析及临床意义
[J]. 组织工程与重建外科杂志, 2023, 19(3): 258-. |
[2] | 柯钰雅, 龚艳春. 原发性醛固酮增多症的心血管损害研究进展[J]. 内科理论与实践, 2023, 18(04): 301-304. |
[3] | 赖莉琴, 龚艳春. 原发性醛固酮增多症慢性肾损伤的研究进展[J]. 内科理论与实践, 2023, 18(03): 211-214. |
[4] | 戴梦婷 崔杰. 动静脉畸形动物模型的研究及应用进展[J]. 组织工程与重建外科杂志, 2022, 18(4): 355-. |
[5] | 卢鸿瑞 谢庆平. 淋巴吻合培训动物模型的制备[J]. 组织工程与重建外科杂志, 2022, 18(1): 29-. |
[6] | 杨三红, 邓呈亮. 血管化淋巴结移植动物模型的研究进展[J]. 组织工程与重建外科杂志, 2022, 18(1): 53-. |
[7] | 杨崔燕, 王豪雨, 陈小松, 沈坤炜. 抑癌基因TP53突变状态与三阴性乳腺癌病人预后的研究[J]. 外科理论与实践, 2022, 27(05): 421-428. |
[8] | 郝旭, 王伟铭. 依靠肾活检确诊的以肾脏病变为主要表现的法布里病1例报告[J]. 诊断学理论与实践, 2022, 21(04): 527-529. |
[9] | 徐娜娜, 吴涛, 寇明坤, 白海. ASXL1基因突变在急性髓系白血病中的研究进展[J]. 内科理论与实践, 2022, 17(04): 353-355. |
[10] | 周璐, 雷航, 洪叶, 金爽, 董永勤, 王学锋, 蔡晓红. 一个新的ABO*A等位基因导致的AwB亚型及其分子机制研究[J]. 诊断学理论与实践, 2021, 20(06): 547-551. |
[11] | 姚碧莲, 张欣欣, 韩悦. 肝豆状核变性的基因诊断研究进展[J]. 内科理论与实践, 2021, 16(05): 354-358. |
[12] | 魏兆楠, 陈永熙. 实验性血管炎动物模型研究进展[J]. 内科理论与实践, 2021, 16(01): 53-59. |
[13] | 崔恒庆,孙滨,方霞,周晟博,杨皓然,戴心怡,韩刚,王斌. NOG R167G突变致先天性指间关节黏连[J]. 组织工程与重建外科杂志, 2020, 16(1): 39-42. |
[14] | 蒋怡然, 王卫庆. 原发性醛固酮增多症的诊治现状及展望[J]. 诊断学理论与实践, 2020, 19(05): 445-449. |
[15] | 陈歆, 程艾邦, 许建忠, 李燕, 王继光. 中国高血压患者原发性醛固酮增多症的前瞻性筛查研究进展[J]. 诊断学理论与实践, 2020, 19(05): 450-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||