Journal of Internal Medicine Concepts & Practice ›› 2022, Vol. 17 ›› Issue (05): 413-417.doi: 10.16138/j.1673-6087.2022.05.014
• Review article • Previous Articles Next Articles
ZHANG Lulu, WU Qiannan, HUO Rujie, et al
Received:
2021-09-29
Online:
2022-09-30
Published:
2022-11-04
CLC Number:
ZHANG Lulu, WU Qiannan, HUO Rujie, et al. Research progress of miRNA-206 on lung diseases[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 413-417.
[1] |
van Schooneveld E, Wildiers H, Vergote I, et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management[J]. Breast Cancer Res, 2015, 17: 21.
doi: 10.1186/s13058-015-0526-y pmid: 25849621 |
[2] |
Pan Y, Liu L, Li S, et al. Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms[J]. Sci Rep, 2018, 8(1): 3624.
doi: 10.1038/s41598-018-21812-0 pmid: 29483552 |
[3] |
Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336.
doi: 10.3322/caac.21244 URL |
[4] |
Ma G, Wang Y, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease[J]. Int J Biol Sci, 2015, 11(3): 345-352.
doi: 10.7150/ijbs.10921 pmid: 25678853 |
[5] |
Holgate ST, Wenzel S, Postma DS, et al. Asthma[J]. Nat Rev Dis Primers, 2015, 1(1): 15025.
doi: 10.1038/nrdp.2015.25 URL |
[6] |
Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50.
doi: S0272-5231(18)30125-4 pmid: 30691715 |
[7] |
Park SJ, Lee YC. Interleukin-17 regulation: an attractive therapeutic approach for asthma[J]. Respir Res, 2010, 11(1): 78.
doi: 10.1186/1465-9921-11-78 URL |
[8] | 钱琴芬, 熊建新, 朱琳, 等. 发作期哮喘患儿外周血单个核细胞中miR-206表达变化及意义[J]. 山东医药, 2018, 58(37): 62-64. |
[9] |
Zheng H, Zhang X, Castillo EF, et al. Leptin enhances TH2 and ILC2 responses in allergic airway disease[J]. J Biol Chem, 2016, 291(42): 22043-22052.
pmid: 27566543 |
[10] |
Kılıç A, Santolini M, Nakano T, et al. A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation[J]. JCI Insight, 2018, 3(11): e97503.
doi: 10.1172/jci.insight.97503 URL |
[11] | Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931. |
[12] |
Wang L, Xu J, Liu H, et al. PM2.5 inhibits SOD1 expression by up-regulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice[J]. Int Immunopharmacol, 2019, 76: 105871.
doi: 10.1016/j.intimp.2019.105871 URL |
[13] | Hough KP, Curtiss ML, Blain TJ, et al. Airway remodeling in asthma[J]. Front Med (Lausanne), 2020, 7: 191. |
[14] |
Ojiaku CA, Yoo EJ, Panettieri RA Jr. Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. the missing link?[J]. Am J Respir Cell Mol Biol, 2017, 56(4): 432-442.
doi: 10.1165/rcmb.2016-0307TR URL |
[15] | Kistemaker LEM, Prakash YS. Airway innervation and plasticity in asthma[J]. Physiology (Bethesda), 2019, 34(4): 283-298. |
[16] | Goodwin K, Mao S, Guyomar T, et al. Smooth muscle differentiation shapes domain branches during mouse lung development[J]. Development, 2019, 146(22): dev181172. |
[17] |
Radzikinas K, Aven L, Jiang Z, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle[J]. J Neurosci, 2011, 31(43): 15407-15415.
doi: 10.1523/JNEUROSCI.2745-11.2011 pmid: 22031887 |
[18] |
Clifford RL, Singer CA, John AE. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function[J]. Pulm Pharmacol Ther, 2013, 26(1): 75-85.
doi: 10.1016/j.pupt.2012.07.002 pmid: 22800879 |
[19] |
Rodrigo GJ. Advances in acute asthma[J]. Curr Opin Pulm Med, 2015, 21(1): 22-26.
doi: 10.1097/MCP.0000000000000123 pmid: 25405669 |
[20] |
Kho AT, McGeachie MJ, Moore KG, et al. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma[J]. Respir Res, 2018, 19(1): 128.
doi: 10.1186/s12931-018-0828-6 URL |
[21] |
Lei Y, Guo W, Chen B, et al. Tumor-released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non-small cell lung cancer[J]. Oncol Rep, 2018, 40(6): 3438-3446.
doi: 10.3892/or.2018.6762 pmid: 30542738 |
[22] | Jiang S, Liu X, Li D, et al. Study on attenuating angiogenesis and epithelial-mesenchymal transition(EMT) of non-small cell lung carcinoma(NSCLC) by regulating MAGEC2[J]. Technol Cancer Res Treat, 2018, 17: 15330 33818797587. |
[23] |
Zhang YX, Yan YF, Liu YM, et al. Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth[J]. Cell Death Dis, 2016, 7(12): e2528.
doi: 10.1038/cddis.2016.432 URL |
[24] |
Sun C, Liu Z, Li S, et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation[J]. Oncotarget, 2015, 6(28): 25533-25574.
doi: 10.18632/oncotarget.4575 pmid: 26325180 |
[25] |
Chen QY, Jiao DM, Wu YQ, et al. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway[J]. Oncotarget, 2016, 7(14): 18247-18261.
doi: 10.18632/oncotarget.7570 URL |
[26] |
Zhang Y, Yao K, Shi C, et al. 244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells[J]. Oncotarget, 2015, 6(42): 44274-44288.
doi: 10.18632/oncotarget.6236 pmid: 26517520 |
[27] |
Jiao D, Chen J, Li Y, et al. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT[J]. J Cell Mol Med, 2018, 22(7): 3526-3536.
doi: 10.1111/jcmm.13629 pmid: 29664235 |
[28] |
Yang Y, Wang W, Chang H, et al. Reciprocal regulation of miR-206 and IL-6/STAT3 pathway mediates IL6-induced gefitinib resistance in EGFR-mutant lung cancer cells[J]. J Cell Mol Med, 2019, 23(11): 7331-7341.
doi: 10.1111/jcmm.14592 pmid: 31507089 |
[29] |
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report[J]. Am J Respir Crit Care Med, 2017, 195(5): 557-582.
doi: 10.1164/rccm.201701-0218PP URL |
[30] |
Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2018, 198(2): 175-186.
doi: 10.1164/rccm.201710-2140CI URL |
[31] |
Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD[J]. Thorax, 2013, 68(12): 1140-1149.
doi: 10.1136/thoraxjnl-2012-203129 pmid: 23814167 |
[32] | Carpi S, Polini B, Nieri D, et al. Expression analysis of muscle-specific miRNAs in plasma-derived extracellular vesicles from patients with chronic obstructive pulmonary disease[J]. Diagnostics (Basel), 2020, 10(7): 502. |
[33] |
Chan SMH, Selemidis S, Bozinovski S, et al. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD)[J]. Pharmacol Ther, 2019, 198: 160-188.
doi: 10.1016/j.pharmthera.2019.02.013 URL |
[34] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[35] |
Sun Y, An N, Li J, et al. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease[J]. J Cell Biochem, 2019, 120(4): 6223-6236.
doi: 10.1002/jcb.27910 pmid: 30335896 |
[36] |
Mayeux JD, Pan IZ, Dechand J, et al. Management of pulmonary arterial hypertension[J]. Curr Cardiovasc Risk Rep, 2021, 15(1): 2.
doi: 10.1007/s12170-020-00663-3 pmid: 33224405 |
[37] |
Lv Y, Fu L, Zhang Z, et al. Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats[J]. J Am Heart Assoc, 2019, 8(2): e010456.
doi: 10.1161/JAHA.118.010456 URL |
[38] | 白延平, 李海军, 刘智娜. miR-206在大鼠肺动脉高压模型中的表达和意义[J]. 心脏杂志, 2019, 31(6): 654-659. |
[39] |
Yue J, Guan J, Wang X, et al. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway[J]. Lab Invest, 2013, 93(7): 748-759.
doi: 10.1038/labinvest.2013.63 pmid: 23628900 |
[40] |
Jalali S, Ramanathan GK, Parthasarathy PT, et al. miR-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation[J]. PLoS One, 2012, 7(10): e46808.
doi: 10.1371/journal.pone.0046808 URL |
[41] |
Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia[J]. Respir Med, 2017, 132: 170-177.
doi: 10.1016/j.rmed.2017.10.014 URL |
[42] |
Yen CY, Huang CY, Hou MF, et al. Evaluating the performance of fibronectin 1(FN1), integrin α4β1 (ITGA4), syndecan-2 (SDC2), and glycoprotein CD44 as the potential biomarkers of oral squamous cell carcinoma (OSCC)[J]. Biomarkers, 2013, 18(1): 63-72.
doi: 10.3109/1354750X.2012.737025 URL |
[43] |
Duan J, Zhang X, Zhang S, et al. miR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type Ⅱ alveolar epithelial cells[J]. Exp Ther Med, 2017, 13(6): 3203-3208.
doi: 10.3892/etm.2017.4430 pmid: 28587394 |
[44] |
Zhang X, Xu J, Wang J, et al. Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1[J]. PLoS One, 2013, 8(9): e74750.
doi: 10.1371/journal.pone.0074750 URL |
[45] | Zhou J, Fu Y, Liu K, et al. miR-206 regulates alveolar type Ⅱ epithelial cell Cx43 expression in sepsis-induced acute lung injury[J]. Exp Ther Med, 2019, 18(1): 296-304. |
[1] | LI Zhen, PAN Lina, HU Jiaan, XU Zhihong. Clinical characteristics of 142 elderly patients with acute pulmonary embolism [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 379-384. |
[2] | QIU Liwen, XU Yiming, ZHANG Yin, SHEN Honghua, CHEN Shen. Evaluate therapeutic efficacy of resistance training and aerobic training for gerontal patients with chronic obstructive pulmonary disease [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(01): 78-83. |
[3] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(01): 97-101. |
[4] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(04): 276-281. |
[5] | XU Lei, XU Yiming, SHEN Honghua, ZHANG Yin, REN Lei. The impact of comorbidity of stroke and obstructive sleep-hypopnea apnea on sleep, cognition and nerve function [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 97-102. |
[6] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 93-96. |
[7] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 88-92. |
[8] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 84-87. |
[9] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 80-83. |
[10] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 76-79. |
[11] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 73-75. |
[12] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 134-137. |
[13] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 60-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||