外科理论与实践 ›› 2020, Vol. 25 ›› Issue (02): 114-119.doi: 10.16139/j.1007-9610.2020.02.006
收稿日期:
2020-01-22
出版日期:
2020-03-25
发布日期:
2020-04-25
通讯作者:
孙建琴,E-mail: Received:
2020-01-22
Online:
2020-03-25
Published:
2020-04-25
中图分类号:
孙建琴, 叶梦瑶. 老年肌肉衰减症的筛查、评估与干预[J]. 外科理论与实践, 2020, 25(02): 114-119.
SUN Jianqin, YE Mengyao. Screening, evaluation and intervention of sarcopenia in older people[J]. Journal of Surgery Concepts & Practice, 2020, 25(02): 114-119.
表1
肌肉衰减症诊断标准的比较
项目 | 切点制定及特点 | 诊断标准 | ||
---|---|---|---|---|
指标 | 男性切点值 | 女性切点值 | ||
Baumgartner诊断 标准(1998)[ | 基于Rosetta研究229名非西班牙裔白种年轻人(18~40岁)的数据制定参考切点:切点值设定为低于年轻参照组相应指标(均值-2SD) | ASM/身高2 (DXA) | <7.26 kg/m2 | <5.45 kg/m2 |
EWGSOP1(2010)[ | 提出从肌量、肌力、肌肉功能等综合评估。建议以健康年轻人作为参考人群,以低于年轻参照组相应指标(均值-2SD)作为参考切点值。握力与步速参考切点值基于针对肌肉衰减症病人研究的数据 | 肌量减少临界值 | ||
ASM/身高2 (DXA) | 年轻参照组相应指标 (平均值-2SD) | |||
肌力下降临界值 | ||||
握力 | <30 kg | <20 kg | ||
低体力活动临界值 | ||||
步速 | ≤0.8 m/s | |||
IWGS(2011)[ | 基于EWGSOP1(2010)的诊断标准,弥补EWGSOP1(2010)缺少肌量具体参考切点的不足 | ASM/身高2 (DXA) | ≤7.23 kg/m2 | ≤5.67 kg/m2 |
步速 | <1 m/s | |||
AWGS(2014)[ | 针对亚洲人群,综合多项亚洲人群研究结果,采用多项指标综合评估切点制定:使用低于年轻参照组相应指标的(均值-2SD)或低于年轻参照组相应指标的下五分位数为切点值;部分指标的切点值来自肌肉衰减症病人研究的数据 | 肌量减少临界值 | ||
ASM/身高2(DXA) | <7.0 kg/m2 | <5.7 kg/m2 | ||
或ASM/身高2 (BIA) | <7.0 kg/m2 | <5.4 kg/m2 | ||
肌力下降临界值 | ||||
握力 | <26 kg | <18 kg | ||
低体力活动临界值 | ||||
步速 | ≤0.8 m/s | |||
FNIH(2014)[ | 利用9项大型临床研究的数据(共26 625名参与者)制定切点,人群广泛多样;切点制定时强调体重对临界值的影响 | 肌力下降临界值 | ||
握力 | <26 kg | <16 kg | ||
或BMI校正的握力 | <1.0 | <0.56 | ||
肌量减少临界值 | ||||
BMI校正的ASM | <0.789 | <0.512 | ||
或ASM (DXA) | <19.75 kg | <15.02 kg | ||
低体力活动临界值 | ||||
步速 | ≤0.8 m/s | |||
EWGSOP2(2018)[ | 针对欧洲人群,切点制定仍沿用低于年轻参照组的相应指标(平均值-2SD);部分特定情况下,建议使用(均值-2.5SD)。步速、握力等指标的切点值仍采用针对肌肉衰减症病人研究的数据 | 肌力下降临界值 | ||
握力 | <27 kg | <16 kg | ||
座椅起蹲试验 | 起蹲5次耗时>15 s | |||
肌量减少临界值 | ||||
ASM (DXA) | <20 kg | <15 kg | ||
ASM/身高2 (DXA) | <7.0 kg/m2 | <5.5 kg/m2 | ||
低体力活动临界值 | ||||
步速 | ≤0.8 m/s | |||
SPPB | ≤8分 | |||
TUG | ≥20 s | |||
400 m行走 | 未完成或≥6 min才完成 |
[1] |
Rosenberg IH. Sarcopenia: origins and clinical relevance[J]. J Nutr, 1997, 127(5 Suppl):990s-991s.
doi: 10.1093/jn/127.5.990S URL |
[2] |
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4):412-423.
doi: 10.1093/ageing/afq034 pmid: 20392703 |
[3] |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age and Ageing, 2019, 48(1):16-31.
doi: 10.1093/ageing/afy169 pmid: 30312372 |
[4] |
Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101.
doi: 10.1016/j.jamda.2013.11.025 URL |
[5] |
Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code[J]. J Am Med Dir Assoc, 2016, 17(8):675-677.
doi: 10.1016/j.jamda.2016.06.001 pmid: 27470918 |
[6] |
Chen LK, Lee WJ, Peng LN, et al. Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2016, 17(8):767.e1-e7.
doi: 10.1016/j.jamda.2016.05.016 URL |
[7] |
Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening, diagnosis and management[J]. J Nutr Health Aging, 2018, 22(10):1148-1161.
doi: 10.1007/s12603-018-1139-9 pmid: 30498820 |
[8] |
Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol, 1998, 147(8):755-763.
doi: 10.1093/oxfordjournals.aje.a009520 pmid: 9554417 |
[9] |
Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia[J]. J Am Med Dir Assoc, 2011, 12(4):249-256.
doi: 10.1016/j.jamda.2011.01.003 pmid: 21527165 |
[10] |
Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, confe-rence recommendations, and final estimates[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5):547-558.
doi: 10.1093/gerona/glu010 URL |
[11] |
Tessier AJ, Chevalier S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline[J]. Nutrients, 2018, 10(8).pii: E1099. doi: 10.3390/nu10081099.
doi: 10.3390/nu10081099 |
[12] |
Traylor DA, Gorissen SHM, Phillips SM. Perspective: protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance?[J]. Adv Nutr, 2018, 9(3):171-182.
doi: 10.1093/advances/nmy003 pmid: 29635313 |
[13] | 孙建琴, 张坚, 常翠青, 等. 肌肉衰减综合征营养与运动干预中国专家共识(节录)[J]. 营养学报, 2015, 37(4): 320-324. |
[14] |
Wu H, Xia Y, Jiang J, et al. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2015, 61(2):168-175.
doi: 10.1016/j.archger.2015.06.020 URL |
[15] |
Lanza IR, Zabielski P, Klaus KA, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis[J]. Cell Metabolism, 2012, 16(6):777-788.
doi: 10.1016/j.cmet.2012.11.003 pmid: 23217257 |
[16] |
Dirks AJ, Leeuwenburgh C. Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12[J]. Free Radic Biol Med, 2004, 36(1):27-39.
doi: 10.1016/j.freeradbiomed.2003.10.003 URL |
[17] |
Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise[J]. Exp Gerontol, 2010, 45(2):138-148.
doi: 10.1016/j.exger.2009.11.002 pmid: 19903516 |
[18] |
Kunkel SD, Suneja M, Ebert SM, et al. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass[J]. Cell Metab, 2011, 13(6):627-638.
doi: 10.1016/j.cmet.2011.03.020 URL |
[19] |
Yu R, Chen JA, Xu J, et al. Suppression of muscle was-ting by the plant-derived compound ursolic acid in a model of chronic kidney disease[J]. J Cachexia Sarcopenia Muscle, 2017, 8(2):327-341.
doi: 10.1002/jcsm.12162 URL |
[20] |
Varian BJ, Gourishetti S, Poutahidis T, et al. Beneficial bacteria inhibit cachexia[J]. Oncotarget, 2016, 7(11):11803-11816.
doi: 10.18632/oncotarget.7730 URL |
[21] |
Caputi V, Marsilio I, Filpa V, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice[J]. Br J Pharmacol, 2017, 174(20):3623-3639.
doi: 10.1111/bph.13965 URL |
[22] |
Buigues C, Fernandez-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6):pii: E932. doi: 10.3390/ijms17060932.
doi: 10.3390/ijms17060932 |
[23] |
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis?[J]. Nutrients, 2017, 9(12): pii: E1303. doi: 10.3390/nu9121303.
doi: 10.3390/nu9121303 |
[24] | Marzetti E, Calvani R, Tosato M, et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia[J]. Aging Clin Exp Res, 2017, 29(1):35-42. |
[25] |
Peterson MD, Rhea MR, Sen A, et al. Resistance exercise for muscular strength in older adults: a meta-analysis[J]. Ageing Res Rev, 2010, 9(3):226-237.
doi: 10.1016/j.arr.2010.03.004 pmid: 20385254 |
[26] |
Law TD, Clark LA, Clark BC. Resistance exercise to prevent and manage sarcopenia and dynapenia[J]. Annu Rev Gerontol Geriatr, 2016, 36(1):205-228.
doi: 10.1891/0198-8794.36.205 URL |
[27] |
Lee SJ. Regulation of muscle mass by myostatin[J]. Annu Rev Cell Dev Biol, 2004, 20:61-86.
doi: 10.1146/annurev.cellbio.20.012103.135836 URL |
[28] |
Murphy KT, Koopman R, Naim T, et al. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function[J]. FASEB J, 2010, 24(11):4433-4442.
doi: 10.1096/fj.10-159608 pmid: 20624929 |
[29] |
Murphy KT, Ryall JG, Snell SM, et al. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice[J]. Am J Pathol, 2010, 176(5):2425-2434.
doi: 10.2353/ajpath.2010.090932 pmid: 20363926 |
[30] |
Holzbaur EL, Howland DS, Weber N, et al. Myostatin inhibition slows muscle atrophy in rodent models of amyo-trophic lateral sclerosis[J]. Neurobiol Dis, 2006, 23(3):697-707.
pmid: 16837207 |
[31] | Lebrasseur NK, Schelhorn TM, Bernardo BL, et al. Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice[J]. J Gerontol A Biol Sci Med Sci, 2009, 64(9):940-948. |
[32] |
Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial[J]. Lancet Diabetes Endocrinol, 2015, 3(12):948-957.
doi: 10.1016/S2213-8587(15)00298-3 URL |
[33] |
Bhasin S, Calof OM, Storer TW, et al. Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging[J]. Nat Clin Pract Endocrinol Metab, 2006, 2(3):146-159.
doi: 10.1038/ncpendmet0120 URL |
[34] |
Sinha-Hikim I, Cornford M, Gaytan H, et al. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men[J]. J Clin Endocrinol Metab, 2006, 91(8):3024-3033.
doi: 10.1210/jc.2006-0357 URL |
[35] |
Onder G, Penninx BW, Balkrishnan R, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study[J]. Lancet, 2002, 359(9310):926-930.
doi: 10.1016/S0140-6736(02)08024-8 URL |
[36] |
Maggio M, Ceda GP, Lauretani F, et al. Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age(the InCHIANTI study)[J]. Am J Cardiol, 2006, 97(10):1525-1529.
doi: 10.1016/j.amjcard.2005.11.089 URL |
[1] | 颜文婷, 杨隆, 李长城, 罗伟. 考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 上海交通大学学报, 2023, 57(9): 1165-1175. |
[2] | 胡铭轩, 乔钧, 张执南. 连续康复训练动作分割与评估[J]. 上海交通大学学报, 2023, 57(5): 533-544. |
[3] | 王慧 龚黎青 郭洪芳 顾晓琳.
标准化术前访视对面神经瘫痪修复重建手术治疗的影响
[J]. 组织工程与重建外科杂志, 2023, 19(3): 294-. |
[4] | 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 30-39. |
[5] | 白婷婷, 李菲卡, 徐刚, 蒋倩雯, 吴方. 老年功能受损风险简易预测模型构建[J]. 内科理论与实践, 2023, 18(03): 177-182. |
[6] | 骆洋, 钟鸣. 腹腔镜低位直肠癌前切除术吻合口漏的预防和治疗[J]. 外科理论与实践, 2023, 28(03): 220-225. |
[7] | 张音, 沈宏华, 许轶明, 任蕾, 李骏, 吴顺军, 凌小楠. 肌少症合并腹型肥胖对住院老年人肌力及躯体功能的影响[J]. 内科理论与实践, 2023, 18(02): 76-82. |
[8] | 李嫣然, 徐琛莹, 荣岚, 林青. 临床老年慢性非传染性疾病患者5年代谢指标变化趋势的关联研究[J]. 内科理论与实践, 2023, 18(02): 87-91. |
[9] | 于岚, 张永怡, 黄雷, 万歆, 姜胜耀, 唐思静, 张俊, 胡伟国. 老年病人胰十二指肠切除术后严重并发症发生的危险因素[J]. 外科理论与实践, 2023, 28(02): 139-146. |
[10] | 陆玮, 李叙婷, 虞蔚滨, 夏一梦, 范秋维. 胃肠镜麻醉前评估病人的连续心脏指数与左心室射血分数相关性[J]. 外科理论与实践, 2023, 28(02): 152-156. |
[11] | 杨文洁, 严福华. 2022年美国国立综合癌症网络(NCCN)《肺癌筛查临床实践指南》(第2版)解读[J]. 诊断学理论与实践, 2023, 22(01): 14-20. |
[12] | 钱莹, 马晓波, 高琛妮, 陈孜瑾, 马骏, 俞海瑾, 张文, 陈晓农. 骨折风险评估工具在评估维持性血液透析患者骨折风险中的效能[J]. 诊断学理论与实践, 2023, 22(01): 50-57. |
[13] | 中华医学会内分泌学分会. 老年与儿童青少年糖尿病人群新型冠状病毒感染临床应对指南[J]. 内科理论与实践, 2023, 18(01): 10-12. |
[14] | 张大元, 姜德胜, 陈冠宇, 孟飞翔. 基于剩余作战能力的地空导弹武器系统生存效能评估方法研究[J]. 空天防御, 2022, 5(4): 24-29. |
[15] | 周荣 综述 高伟成 审校. 老年性上睑下垂发生机制研究进展[J]. 组织工程与重建外科杂志, 2022, 18(3): 281-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||