外科理论与实践 ›› 2020, Vol. 25 ›› Issue (04): 354-358.doi: 10.16139/j.1007-9610.2020.04.018
收稿日期:
2019-10-09
出版日期:
2020-07-25
发布日期:
2022-07-18
通讯作者:
陈磊 审校
E-mail:chenlei@xinhuamed.com.cn
基金资助:
HUANG Zhiye, LIANG Haibin, CHEN Lei()
Received:
2019-10-09
Online:
2020-07-25
Published:
2022-07-18
Contact:
CHEN Lei
E-mail:chenlei@xinhuamed.com.cn
中图分类号:
黄之野 综述, 梁海滨, 陈磊 审校. 循环外泌体miRNA在胃癌临床诊疗应用中的研究进展[J]. 外科理论与实践, 2020, 25(04): 354-358.
HUANG Zhiye, LIANG Haibin, CHEN Lei. Research progress of circulating exosomal miRNA use in diagnosis and treatment of gastric cancer[J]. Journal of Surgery Concepts & Practice, 2020, 25(04): 354-358.
表1
循环外泌体miRNA在胃癌临床诊断、预后、化疗耐药性中的研究
参考文献 | miRNA | 实验组 (n) | 对照组 (n) | 样本类型 | 方法 | TNM Ⅰ/Ⅱ/Ⅲ/Ⅳ | HR | ROC的AUC | 特异度/ 灵敏度 | 临床 应用 |
---|---|---|---|---|---|---|---|---|---|---|
Liu等[ | has-miR- 122-5p | 30 | 30 | 人血清 外泌体 | 二代测序、 qRT-PCR | / | / | 0.67 | 86%/62% | 诊断 |
Shi等[ | miR-1246 | 85 | 50 | 人血清 外泌体 | qRT-PCR | 28/32/14/11 | / | 0.84、 0.81 | 74%/85%、 80%/78% | 诊断/ 预后 |
Yang等[ | miR-423-5p | 80 | 80 | 人血清 外泌体 | qRT-PCR | 18/15/20/27 | / | 0.76 | 57%/ 81% | 诊断/ 预后 |
Wang等[ | miR-19b联 合miR-106a | 90 | 90 | 人血清 外泌体 | qRT-PCR | / | / | 0.81 | 90%/ 95% | 诊断/ 预后 |
Huang等[ | miR10b-5p、 miR132-3p、 miR185-5p、 miR195-5p、 miR-20a3p、 miR2965p | 49 154 | 47 120 | 人血清 | miRNA芯片、 qRT-PCR | 11/10/23/5 35/33/65/21 | / | 0.76、 0.70、 0.70 | / | 诊断/ 预后 |
Bai等[ | miR-135b | 1 977 | 1 974 | 人血清 外泌体 | qRT-PCR | / | 0.68 | / | / | 诊断/ 预后 |
Kumata等[ | miR-23b | 232 | 20 | 人血清 外泌体 | miRNA芯片、 qRT-PCR | 74/47/79/32 | 0.45 | / | / | 诊断/ 预后 |
Ren等[ | miR-107 | 16 | 16 | 人血清 外泌体 | qRT-PCR | / | / | / | / | 诊断 |
Huang等[ | miR-1 290 | / | / | 人血清 外泌体 | qRT-PCR | / | / | / | / | 诊断 |
Liu等[ | miR-451 | 76 | 42 | 人血清 外泌体 | qRT-PCR | 12/22/24/18 | 4.34 | / | / | 诊断/ 预后 |
Ma等[ | miR-221 | 40 | 20 | 人血清 外泌体 | qRT-PCR | 5/15/18/2 | / | / | / | 预后 |
魏玮等[ | 多个 | 6 | 6 | 人血清 外泌体 | 二代测序、 qRT-PCR | Ⅰ+Ⅱ/Ⅲ+Ⅳ 0/6 | / | / | / | 耐药 |
Zheng等[ | miR-21 | / | / | 细胞上 清液 | qRT-PCR | / | / | / | / | 耐药 |
Wang等[ | miR-214 | / | / | 鼠血清 外泌体 | qRT-PCR | / | / | / | / | 耐药/ 治疗 |
[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
doi: 10.3322/caac.21262 URL |
[2] | Shen L, Shan YS, Hu HM, et al. Management of gastric cancer in Asia: resource-stratified guidelines[J]. Lancet Oncol, 2013, 14(12):e535-e547. |
[3] |
Leung WK, Wu MS, Kakugawa Y, et al. Screening for gastric cancer in Asia: current evidence and practice[J]. Lancet Oncol, 2008, 9(3):279-287.
doi: 10.1016/S1470-2045(08)70072-X pmid: 18308253 |
[4] |
Shimada H, Noie T, Ohashi M, et al. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association[J]. Gastric Cancer, 2014, 17(1):26-33.
doi: 10.1007/s10120-013-0259-5 URL |
[5] | Mathai RA, Vidya RVS, Reddy BS, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology[J]. J Clin Med, 2019, 8(3).pii:E373. |
[6] |
Becker A, Thakur BK, Weiss JM, et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis[J]. Cancer Cell, 2016, 30(6):836-848.
doi: 10.1016/j.ccell.2016.10.009 URL |
[7] |
Huang T, Song C, Zheng L, et al. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy[J]. Mol Cancer, 2019, 18(1):62.
doi: 10.1186/s12943-019-0967-5 URL |
[8] |
Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity[J]. Cell, 2017, 171(2):372-384,e12.
doi: S0092-8674(17)30993-5 pmid: 28942920 |
[9] |
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30):10513-10518.
doi: 10.1073/pnas.0804549105 pmid: 18663219 |
[10] |
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute 2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J]. Proc Natl Acad Sci U S A, 2011, 108(12):5003-5008.
doi: 10.1073/pnas.1019055108 pmid: 21383194 |
[11] |
Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes[J]. PloS One, 2012, 7(3):e30679.
doi: 10.1371/journal.pone.0030679 URL |
[12] |
Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer, 2011, 11(6):426-437.
doi: 10.1038/nrc3066 pmid: 21562580 |
[13] |
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4):373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871 |
[14] | Larrea E, Sole C, Manterola L, et al. New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies[J]. Int J Mol Sci, 2016, 17(5).pii:E627. |
[15] |
Liu H, Li PW, Yang WQ, et al. Identification of non-invasive biomarkers for chronic atrophic gastritis from serum exosomal microRNAs[J]. BMC Cancer, 2019, 19(1):129.
doi: 10.1186/s12885-019-5328-7 URL |
[16] | Shi Y, Wang Z, Zhu X, et al. Exosomal miR-1246 in serum as a potential biomarker for early diagnosis of gastric cancer[J]. Int J Clin Oncol,2019-09-10. [Epub ahead of print] |
[17] |
Yang H, Fu H, Wang B, et al. Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer[J]. Mol Carcinog, 2018, 57(9):1223-1236.
doi: 10.1002/mc.22838 URL |
[18] |
Bai M, Li J, Yang H, et al. miR-135b delivered by gastric tumor exosomes inhibits foxo1 expression in endothelial cells and promotes angiogenesis[J]. Mol Ther, 2019, 27(10):1772-1783.
doi: 10.1016/j.ymthe.2019.06.018 URL |
[19] | Kumata Y, Iinuma H, Suzuki Y, et al. Exosome-encapsulated microRNA23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage[J]. Oncol Rep, 2018, 40(1):319-330. |
[20] |
Ren W, Zhang X, Li W, et al. Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer[J]. Cancer Manag Res, 2019, 11:4023-4040.
doi: 10.2147/CMAR.S198886 URL |
[21] |
Huang J, Shen M, Yan M, et al. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(9):900-907.
doi: 10.1093/abbs/gmz077 URL |
[22] |
Liu F, Bu Z, Zhao F, Xiao D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells[J]. Cancer Science, 2018, 109(1):65-73.
doi: 10.1111/cas.13429 URL |
[23] |
Wang N, Wang L, Yang Y, et al. A serum exosomal microRNA panel as a potential biomarker test for gastric cancer[J]. Biochem Biophys Res Commun, 2017, 493(3):1322-1328.
doi: 10.1016/j.bbrc.2017.10.003 URL |
[24] |
Huang Z, Zhu D, Wu L, et al. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(2):188-196.
doi: 10.1158/1055-9965.EPI-16-0607 URL |
[25] |
Ma M, Chen S, Liu Z, et al. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer[J]. Onco Targets Ther, 2017, 10:4161-4171.
doi: 10.2147/OTT.S143315 URL |
[26] | 魏玮, 王艺, 李霖, 等. 5-氟尿嘧啶耐药的晚期胃癌病人血清外泌体miRNA表达谱分析[J]. 肿瘤, 2017, 37(10):1047-1055. |
[27] |
Zheng P, Chen L, Yuan X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1):53.
doi: 10.1186/s13046-017-0528-y URL |
[28] |
Li BS, Zhao YL, Guo G, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection[J]. PloS One, 2012, 7(7):e41629.
doi: 10.1371/journal.pone.0041629 URL |
[29] |
Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer[J]. Mol Ther, 2018, 26(3):774-783.
doi: 10.1016/j.ymthe.2018.01.001 URL |
[1] | 李新宇 郭智霖.
外伤性视神经损伤的研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(3): 315-. |
[2] | 刘家赫, 胡彭炜, 程海龙. 基于性能退化的复杂系统视情维修技术研究[J]. 空天防御, 2023, 6(1): 56-62. |
[3] | 高定辉, 陈勇, 王倩, 等. 肌内静脉畸形的影像学观察 :单中心回顾性分析 [J]. 组织工程与重建外科杂志, 2023, 19(1): 37-. |
[4] | 严超, 陆晟, 燕敏, 朱正纲. 《日本胃癌治疗指南2021(第6版)》解读及瑞金实践[J]. 外科理论与实践, 2023, 28(04): 326-354. |
[5] | 孙祺, 黄文博, 何炳良, 刘畅, 徐宇航, 赵伟. 预防性腹腔热灌注化疗对局部进展期胃癌根治术后病人预后改善的有效性研究[J]. 外科理论与实践, 2023, 28(04): 366-370. |
[6] | 孙强, 姚骏, 张鑫, 杜杉珊, 王伟军. 近端胃切除抗反流消化道重建方式的研究进展[J]. 外科理论与实践, 2023, 28(04): 388-393. |
[7] | 王焰, 陶怡, 金诗炜, 糜坚青, 刘元昉. 调整剂量的达妥木单抗联合DCEP治疗硼替佐米和来那度胺双耐药的多发性骨髓瘤[J]. 内科理论与实践, 2023, 18(03): 165-170. |
[8] | 胡文庆, 杨垠浩, 崔鹏, 魏伟. 食管胃结合部腺癌腹腔镜经腹-左膈肌路径近端胃加食管下段切除高位消化道重建现状[J]. 外科理论与实践, 2023, 28(03): 226-232. |
[9] | 燕速, 郑民华. 中国单孔及减孔腹腔镜胃癌手术实践[J]. 外科理论与实践, 2023, 28(03): 233-239. |
[10] | 董军, 崔凤鸣, 刘军. 沉默Ki-67基因对乳腺癌MCF-7/DOX细胞多柔比星耐药性的影响[J]. 外科理论与实践, 2023, 28(03): 254-259. |
[11] | 宋陆茜, 常春康. 2023年美国国立综合癌症网络(NCCN)《骨髓增生异常综合征临床实践指南》(第1版)解读[J]. 诊断学理论与实践, 2023, 22(02): 116-120. |
[12] | 郝家琪, 王鑫鹭, 胡晓帆, 潘晓霞, 徐静, 马骏. 急性肾小管间质性肾炎与急性肾小管坏死的临床鉴别分析[J]. 诊断学理论与实践, 2023, 22(02): 127-133. |
[13] | 颜凌, 王凌云, 陈勇, 杜联军. 双能CT图像深度学习重建算法在胃癌术前T分期中的应用[J]. 诊断学理论与实践, 2023, 22(02): 154-159. |
[14] | 谢雅琼, 林孝怡. 血清游离轻链在鉴别诊断不同病因肾病的应用价值及其与患者肾功能分期的相关性分析[J]. 诊断学理论与实践, 2023, 22(02): 166-171. |
[15] | 李丽娟, 谢洁, 张文, 马骏. Gitelman综合征继发横纹肌溶解症一例并文献复习[J]. 诊断学理论与实践, 2023, 22(02): 178-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||