外科理论与实践 ›› 2021, Vol. 26 ›› Issue (06): 500-503.doi: 10.16139/j.1007-9610.2021.06.008
收稿日期:
2021-10-08
出版日期:
2021-11-25
发布日期:
2022-07-27
通讯作者:
詹维伟
E-mail:shanghairuijin@126.com
Received:
2021-10-08
Online:
2021-11-25
Published:
2022-07-27
Contact:
ZHAN Weiwei
E-mail:shanghairuijin@126.com
中图分类号:
詹维伟, 侯怡卿. 人工智能时代甲状腺超声检查的应用与展望[J]. 外科理论与实践, 2021, 26(06): 500-503.
ZHAN Weiwei, HOU Yiqing. Thyroid ultrasonography in era of artificial intelligence: application and prospect[J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 500-503.
[1] | Kim J, Gosnell JE, Roman SA. Geographic influences in the global rise of thyroid cancer[J]. Nat Rev Endocrinol, 2020, 16(1):17-29. |
[2] | Li M, Dal Maso L, Vaccarella S. Global trends in thyroid cancer incidence and the impact of overdiagnosis[J]. Lancet Diabetes Endocrinol, 2020, 8(6):468-470. |
[3] | Sollini M, Cozzi L, Chiti A, et al. Texture analysis and machine learning to characterize suspected thyroid no-dules and differentiated thyroid cancer: where do we stand?[J]. Eur J Radiol, 2018, 99:1-8. |
[4] | Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid no-dules based on ultrasound images: a comparison with radiologist-based assessments[J]. Med Phys, 2016, 43(1):554. |
[5] | Zhang B, Tian J, Pei S, et al. Machine learning- assisted system for thyroid nodule diagnosis[J]. Thyroid, 2019, 29(6):858-867. |
[6] | Gao L, Liu R, Jiang Y, et al. Computer-aided system for diagnosing thyroid nodules on ultrasound: a comparison with radiologist-based clinical assessments[J]. Head Neck, 40(4):778-783. |
[7] | Wang L, Yang S, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network[J]. World J Surg Oncol, 2019, 17(1):12. |
[8] | Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. Lancet Oncol, 2019, 20(2):193-201. |
[9] | Akselrod-Ballin A, Chorev M, Shoshan Y, et al. Predic-ting breast cancer by applying deep learning to linked health records and mammograms[J]. Radiology, 2019, 292(2):331-342. |
[10] | Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks[J]. Med Image Anal, 2019, 58:101555. |
[11] | Fang H, Gong L, Xu Y, et al. Reliable thyroid carcinoma detection with real-time intelligent analysis of ultrasound images[J]. Ultrasound Med Biol, 2021, 47(3):590-602. |
[12] | Hou Y, Chen C, Zhang L, et al. Using deep neural network to diagnose thyroid nodules on ultrasound in patients with Hashimoto's thyroiditis[J]. Front Oncol, 2021, 11:614172. |
[13] | Yi J, Kang HK, Kwon JH, et al. Technology trends and applications of deep learning in ultrasonography: image quality enhancement, diagnostic support, and improving workflow efficiency[J]. Ultrasonography, 2021, 40(1):7-22. |
[14] | Choi YJ, Baek JH, Park HS, et al. A computer-aided dia-gnosis system using arti cial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment[J]. Thyroid, 2017, 27(4):546-552. |
[15] | Kim HL, Ha EJ, Han M. Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography[J]. Ultrasound Med Biol, 2019, 45(10):2672-2678. |
[16] | Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on us images: deep learning may match performance of radiologists[J]. Radiology, 2019, 292(3):695-701. |
[17] | Daniels K, Gummadi S, Zhu Z, et al. Machine learning by ultrasonography for genetic risk stratification of thyroid nodules[J]. JAMA Otolaryngol Head Neck Surg, 2020, 146(1):36-41. |
[18] | Wang S, Xu J, Tahmasebi A, et al. Incorporation of a machine learning algorithm with object detection within the thyroid imaging reporting and data system improves the diagnosis of genetic risk[J]. Front Oncol, 2020, 10:591846. |
[19] | Zhang Y, Wu Q, Chen Y, et al. A clinical assessment of an ultrasound computer-aided diagnosis system in diffe-rentiating thyroid nodules with radiologists of different diagnostic experience[J]. Front Oncol, 2020, 10:557169. |
[20] | 李潜, 丁思悦, 郭兰伟, 等. 甲状腺结节超声恶性危险分层中国指南(C-TIRADS)联合人工智能辅助诊断对甲状腺结节鉴别诊断的效能评估[J]. 中华超声影像学杂志, 2021, 30(3):231-235. |
[21] | Thomas J, Haertling T. AIBx, artificial intelligence model to risk stratify thyroid nodules[J]. Thyroid, 2020, 30(6):878-884. |
[22] | Lee JH, Baek JH, Kim JH, et al. Deep learning-based computer-aided diagnosis system for localization and dia-gnosis of metastatic lymph nodes on ultrasound: a pilot study[J]. Thyroid, 2018, 28(10):1332-1338. |
[23] | Yu J, Deng Y, Liu T, et al. Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics[J]. Nat Commun, 2020, 11(1):4807. |
[24] | Reverter JL, Vazquez F, Puig-Domingo M. Diagnostic performance evaluation of a computer-assisted imaging analysis system for ultrasound risk stratification of thyroid nodules[J]. Am J Roentgenol, 2019, 213(1):169-174. |
[25] | Chung SR, Baek JH, Lee MK, et al. Computer-aided dia-gnosis system for the evaluation of thyroid nodules on ultrasonography: prospective non-inferiority study accor-ding to the experience level of radiologists[J]. Korean J Radiol, 2020, 21(3):369-376. |
[26] | Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diagnosis system for thyroid nodules on ultrasonography: dia-gnostic performance and reproducibility based on the experience level of operators[J]. Eur Radiol, 2019, 29(4):1978-1985. |
[1] | 石大山, 葛宇航, 孟光韦, 季飚, 蔡克荣. 弹载综合电子系统及其关键技术发展分析[J]. 空天防御, 2023, 6(3): 52-57. |
[2] | 张剑. 外国文学研究的跨学科和数字人文范式[J]. 当代外语研究, 2023, 23(3): 5-13. |
[3] | 李胤, 郭健彬, 张绍伟, 王坤云, 慈慧鹏. 基于多主体和情景意识的人机系统安全性建模方法[J]. 空天防御, 2023, 6(1): 29-37. |
[4] | 李文. 中国ERCP的发展及展望[J]. 外科理论与实践, 2023, 28(04): 279-282. |
[5] | 华晴, 周建桥. 甲状腺良性结节超声引导下热消融并发症研究进展[J]. 诊断学理论与实践, 2023, 22(02): 184-189. |
[6] | 王志燕 宋涛. 人工智能在颅颌面外科中的应用[J]. 组织工程与重建外科杂志, 2022, 18(2): 160-. |
[7] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[8] | 朱立峰, 杨郁青, 赵艳, 朱静, 沈洋, 胡伟国. 上海交通大学医学院附属瑞金医院防疫工作相关科学规范和经验方法——信息化支持[J]. 内科理论与实践, 2022, 17(02): 153-155. |
[9] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[10] | 何清波,姜添曦. 人工智能可以通过操纵波来实现吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 1-2. |
[11] | 李少远, 殷翔. 智能体自我博弈学习是否存在性能极限?[J]. 上海交通大学学报, 2021, 55(Sup.1): 3-4. |
[12] | 赵仁星, 王玲, 冯明月, 贾文通. “马赛克战”作战概念构想及对策分析[J]. 空天防御, 2021, 4(3): 48-54. |
[13] | 郑德重, 杨媛媛, 谢哲, 倪扬帆, 李文涛. 基于Gaussian混合的距离度量学习数据划分方法[J]. 上海交通大学学报, 2021, 55(2): 131-140. |
[14] | 徐浩, 张治, 解学乾, 杨文艺, 刘少稳. 冠脉生理功能评估软件(DEEPVESSEL FFR)与有创FFR在评估冠脉缺血中的对比研究[J]. 诊断学理论与实践, 2021, 20(04): 384-390. |
[15] | 叶蕾, 李浩榕. 良恶性甲状腺结节的分子鉴别诊断进展[J]. 诊断学理论与实践, 2020, 19(04): 334-338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||