外科理论与实践 ›› 2023, Vol. 28 ›› Issue (03): 267-272.doi: 10.16139/j.1007-9610.2023.03.015
收稿日期:
2022-11-07
出版日期:
2023-05-25
发布日期:
2023-08-18
通讯作者:
刘亮, E-mail: 基金资助:
HAN Xu, WANG Wenquan, LOU Wenhui, LIU Liang()
Received:
2022-11-07
Online:
2023-05-25
Published:
2023-08-18
摘要:
靶向免疫检查点的免疫治疗发展迅速,近年来在胃肠胰神经内分泌肿瘤(gastroenteropancreatic neuroendocrine neoplasm, GEP-NEN)中初步探索,但能否带来临床获益尚无定论。本文系统梳理免疫检查点抑制剂(immune checkpoint inhibitor,ICI)单药或双药联合治疗GEP-NEN的临床试验现状及疗效。结果表明,ICI在GEP-NEN中仍未取得突破性进展,治疗复发或转移性GEP-NEN有一定的抗肿瘤活性和安全性,但总体客观缓解率(objective response rate,ORR)较低。ORR与肿瘤分化程度呈负相关,分化差的胃肠胰神经内分泌癌可能更易获得临床缓解。双药与单药相比,疾病控制率更高,但不良反应更严重。鉴于错配修复基因缺陷和微卫星高度不稳定极为罕见,肿瘤突变负荷高(≥10 muts/Mb)的病人能从ICI免疫治疗中改善生存。未来期望进一步探索ICI与化疗、放疗、抗血管生成药物等在GEP-NEN的联合应用,有可能提高其抗肿瘤疗效,起到“1+1>2”的效果。临床应根据病理分化分级、免疫标志物、病情进展程度、病人身体状态等综合评估ICI免疫治疗的获益人群。
中图分类号:
韩序, 王文权, 楼文晖, 刘亮. 免疫检查点抑制剂治疗胃肠胰神经内分泌肿瘤的进展[J]. 外科理论与实践, 2023, 28(03): 267-272.
HAN Xu, WANG Wenquan, LOU Wenhui, LIU Liang. Emerging developments in immune checkpoint inhibitor therapy for gastroenteropancreatic neuroendocrine neoplasm[J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 267-272.
表1
近期ICI治疗GEP-NEN的高质量临床试验汇总
Author(s) | Year | Country | Study type | Participants | Primary NET site | GEP-NET cases (%) | Differentiation | Prior Systemic treatment (%) | Prior systemic treatment protocol | Enrollment disease status | ICI | Target | Follow-up (months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yao et al.[ | 2021 | Global | Phase Ⅱ clinical trial | 116 | Lung, thymus, pancreas, gastrointestinal tract, gallbladder, unknown | 86 (74.1%) | Well-differentiated (n=95), Poorly differentiated (n=21) | 100% | Long-acting growth inhibitors (29.3%) | Progression after prior systemic treatment, distant metastases | Spartalizumab (PDR001) | PD-1 (CD279) | Median value 13.4 |
Patel et al.[ | 2021 | USA | Phase Ⅱ clinical trial | 19 | Nasopharynx, esophagus, gastrointestinal tract, cervix, vulva, unknown | 8 (42.1%) | Moderate to well-differentiated (n=2), Poorly differentiated (n=11), Unknown (n=6) | 100% | Not reported | Progression after prior systemic treatment, no available options, Ki-67 all >20% | Ipilimumab + nivolumab | CTLA-4 +PD-1 | Until 31.0 |
Patel et al.[ | 2020 | USA | Phase Ⅱ clinical trial | 32 | Lung, thymus, gastrointestinal tract, cervix, prostate, unknown | 15 (46.9%) | Moderate to well-differentiated (n=8), Poorly differentiated (n=4) | 100% | Sunitinib (7%) | Progression after prior systemic treatment, no available options | Ipilimumab + nivolumab | CTLA-4 +PD-1 | Until 15.0 |
Strosberg et al.[ | 2020 | Global | Phase Ⅱ clinical trial | 107 | Lung, pancreas, gastrointestinal tract, liver, ovaries, unknown | 83 (77.6%) | All well-diffe-rentiated | 97.2% | Chemotherapy (65.9%) | Majority with distant metastases (106/107), progression after prior systemic treatment | Pembrolizumab | PD-1 | Median value 24.2 |
Klein et al.[ | 2020 | Australia | Phase Ⅱ clinical trial | 29 | Lung, thymus, gastrointestinal tract, prostate, unknown | 10 (34.5%) | Moderate to well-differentiated (n=26), poorly differentiated (n=3) | 89.7% | Chemotherapy (86% EP or CAPTEM protocol) | Local advanced stage or distant metastases | Ipilimumab + nivolumab | CTLA-4 +PD-1 | Until 26.0 |
Lu et al.[ | 2020 | China | Phase Ⅰb clinical trial | 40 | Pancreas, gastrointestinal tract, others | 32 (80.0%) | Well-differentiated (n=8), poorly-differentiated (n=32) | 100% | PRRT (21%) | Metastasis, disease progression after prior systemic treatment, Ki-67 >20% | Toripalimab (JS 001) | PD-1 | Until 24.0 |
Mehnert et al.[ | 2020 | Global | Phase Ⅰb clinical trial | 41 | Lung, pancreas, gastrointestinal tract, others | 16 (39.0%) | All well-diffe-rentiated | 70.7% | Everolimus (7%) | Local advanced stage or distant metastases, progression after prior systemic treatment | Pembrolizumab | PD-1 | Until 24.0 |
Vijayvergia et al.[ | 2020 | USA | Phase II clinical trial | 29 | Thymus, pancreas, gastrointestinal tract, kidney | 24 (82.8%) | G3 | 100% | Everolimus (31.7%) | Local advanced stage or distant metastases, progression after prior systemic treatment, G3 | Pembrolizumab | PD-1 | Until 36.0 |
表2
近期免疫检查点抑制剂治疗GEP-NEN临床试验中的生存分析
Author | Year | Country | Study type | Number of cases | ICI | Median OS (months) | Median PFS (months) |
---|---|---|---|---|---|---|---|
Yao et al.[ | 2021 | Global | Phase Ⅱ clinical trial | 116 | Spartalizumab (PDR001) | Not reached (NET), 6.8 (GEP-NEC) | 3.8 (NET), 1.8 (GEP-NEC) |
Patel et al.[ | 2021 | USA | Phase Ⅱ clinical trial | 19 | Ipilimumab + nivolumab | 8.9 | 2.0 |
Patel et al.[ | 2020 | USA | Phase Ⅱ clinical trial | 32 | Ipilimumab + nivolumab | 11.0 | 4.0 |
Strosberg et al.[ | 2020 | Global | Phase Ⅱ clinical trial | 107 | Pembrolizumab | 24.2 | 4.1 |
Klein et al.[ | 2020 | Australia | Phase Ⅱ clinical trial | 29 | Ipilimumab + nivolumab | 14.78 | 4.82 |
Lu et al.[ | 2020 | China | Phase Ⅰb clinical trial | 40 | Toripalimab (JS 001) | 9.1 (PD-L1≥10%), 7.2 (PD-L1<10%) | 3.8 (PD-L1≥10%), 2.2 (PD-L1<10%) |
Mehnert et al.[ | 2020 | Global | Phase Ⅰb clinical trial | 41 | Pembrolizumab | 21.0 (pNET) | 4.5 (pNET) |
Vijayvergia et al.[ | 2020 | USA | Phase Ⅱ clinical trial | 29 | Pembrolizumab | 5.1 | 2.2 |
[1] |
POLEÉ I N, HERMANS B C M, VAN DER ZWAN J M, et al. Long-term survival in patients with gastroenteropancreatic neuroendocrine neoplasms: a population-based study[J]. Eur J Cancer, 2022, 172:252-263.
doi: 10.1016/j.ejca.2022.06.003 URL |
[2] |
OTT P A, ELEZ E, HIRET S, et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ⅰb KEYNOTE-028 study[J]. J Clin Oncol, 2017, 35(34):3823-3829.
doi: 10.1200/JCO.2017.72.5069 URL |
[3] |
WEBER M M, FOTTNER C. Immune checkpoint inhibitors in the treatment of patients with neuroendocrine neoplasia[J]. Oncol Res Treat, 2018, 41(5):306-312.
doi: 10.1159/000488996 URL |
[4] |
VIJAYVERGIA N, DASARI A, DENG M, et al. Pembrolizumab monotherapy in patients with previously treated metastatic high-grade neuroendocrine neoplasms: joint analysis of two prospective, non-randomised trials[J]. Br J Cancer, 2020, 122(9):1309-1314.
doi: 10.1038/s41416-020-0775-0 |
[5] | STROSBERG J, MIZUNO N, DOI T, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase Ⅱ KEYNOTE-158 study[J]. Clin Cancer Res,2020,26(9):2124-2130. |
[6] |
PATEL S P, OTHUS M, CHAE Y K, et al. A phase Ⅱ basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors[J]. Clin Cancer Res, 2020, 26(10):2290-2296.
doi: 10.1158/1078-0432.CCR-19-3356 URL |
[7] |
PATEL S P, MAYERSON E, CHAE Y K, et al. A phase Ⅱ basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART) SWOG S1609: high-grade neuroendocrine neoplasm cohort[J]. Cancer, 2021, 127(17):3194-3201.
doi: 10.1002/cncr.v127.17 URL |
[8] |
LU M, ZHANG P, ZHANG Y, et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ⅰb trial[J]. Clin Cancer Res, 2020, 26(10):2337-2345.
doi: 10.1158/1078-0432.CCR-19-4000 URL |
[9] |
KLEIN O, KEE D, MARKMAN B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers[J]. Clin Cancer Res, 2020, 26(17):4454-4459.
doi: 10.1158/1078-0432.CCR-20-0621 URL |
[10] |
MEHNERT J M, BERGSLAND E, O'NEIL B H, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: results from the KEYNOTE-028 study[J]. Cancer, 2020, 126(13):3021-3030.
doi: 10.1002/cncr.32883 URL |
[11] | YAO J C, STROSBERG J, FAZIO N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2021:ERC-20-0382.R1. |
[12] |
BÖSCH F, BRÜWER K, ALTENDORF-HOFMANN A, et al. Immune checkpoint markers in gastroenteropancreatic neuroendocrine neoplasia[J]. Endocr Relat Cancer, 2019, 26(3):293-301.
doi: 10.1530/ERC-18-0494 URL |
[13] |
O'DONNELL J S, TENG M W L, SMYTH M J. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(3):151-167.
doi: 10.1038/s41571-018-0142-8 |
[14] | 楼文晖, 韩序. 胃肠胰神经内分泌肿瘤新辅助治疗及转化治疗的策略[J]. 中华消化外科杂志, 2022, 21(4):465-469. |
LOU W H, HAN X. Strategies of neoadjuvant and conversion therapy for gastroenteropancreatic neuroendocrine neoplasms[J]. Chin J Dig Surg, 2022, 21(4):465-469. | |
[15] |
OVCINNIKOVS V, ROSS E M, PETERSONE L, et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells[J]. Sci Immunol, 2019, 4(35):eaaw0902.
doi: 10.1126/sciimmunol.aaw0902 URL |
[16] | TEKGUC M, WING J B, OSAKI M, et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells[J]. Proc Natl Acad Sci U S A, 2021, 118(30):e2023739118. |
[17] |
ARNASON T, SAPP H L, RAYSON D, et al. Loss of expression of DNA mismatch repair proteins is rare in pancreatic and small intestinal neuroendocrine tumors[J]. Arch Pathol Lab Med, 2011, 135(12):1539-1544.
doi: 10.5858/arpa.2010-0560-OA URL |
[18] |
YOUNG K, LAWLOR R T, RAGULAN C, et al. Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours[J]. Gut, 2021, 70(10):1904-1913.
doi: 10.1136/gutjnl-2020-321016 URL |
[1] | 杨盈赤, 庞凯, 张忠涛. 新辅助放疗联合免疫治疗对直肠癌微创术式应用的影响[J]. 外科理论与实践, 2023, 28(03): 186-189. |
[2] | 邢颖, 程石. 胆囊癌新辅助治疗的现状和争议[J]. 外科理论与实践, 2023, 28(02): 110-114. |
[3] | 李建芳, 余俊贤, 严超, 朱正纲, 刘炳亚. 胃癌基础与转化研究的热点问题[J]. 外科理论与实践, 2023, 28(01): 7-16. |
[4] | 张天羽, 周东, 洪桢. 《儿童抗NMDAR脑炎治疗的国际共识推荐》解读[J]. 诊断学理论与实践, 2022, 21(06): 677-683. |
[5] | 任佳逸, 糜坚青. 新型抗体类药物在急性B淋巴细胞白血病中的治疗进展[J]. 内科理论与实践, 2022, 17(06): 463-467. |
[6] | 张希昊, 章馨允, 曹曼卿, 张金梁, 王华琪, 张苏, 付周, 王鲁, 张倜. 肝细胞癌的抗血管生成免疫联合介入治疗:肝动脉灌注化疗与化疗栓塞疗效的比较[J]. 外科理论与实践, 2022, 27(02): 152-157. |
[7] | 于颖彦. 免疫检查点及其抑制剂的发展[J]. 内科理论与实践, 2022, 17(01): 48-52. |
[8] | 王思颖,郑幸玲,覃文新. 癌症患者能否长期生存?[J]. 上海交通大学学报, 2021, 55(Sup.1): 49-50. |
[9] | 宗春燕,沈键锋. 免疫治疗能否治愈肿瘤?[J]. 上海交通大学学报, 2021, 55(Sup.1): 53-54. |
[10] | 杨哲宇, 陆骋豪(综述), 蔡伟(审校). 浆细胞样树突状细胞与肿瘤免疫研究的新进展[J]. 外科理论与实践, 2021, 26(6): 568-572. |
[11] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[12] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[13] | 顾卫琼. 免疫检查点抑制剂致甲状腺损伤的诊治进展[J]. 诊断学理论与实践, 2021, 20(04): 338-342. |
[14] | 王晓斐, 张秋蕊. 免疫检查点抑制剂致肺部不良反应的诊治进展[J]. 诊断学理论与实践, 2021, 20(04): 343-348. |
[15] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||