外科理论与实践 ›› 2020, Vol. 25 ›› Issue (01): 88-91.doi: 10.16139/j.1007-9610.2020.01.020
刘康俊1, 张弛2, 王谦2, 彭睿(综述)2, 柏斗胜(审校)2
收稿日期:
2019-08-21
出版日期:
2020-01-25
发布日期:
2020-02-25
基金资助:
LIU Kangjun1, ZHANG Chi2, WANG Qian2, PENG Rui2, BAI Dousheng2
Received:
2019-08-21
Online:
2020-01-25
Published:
2020-02-25
中图分类号:
刘康俊, 张弛, 王谦, 彭睿, 柏斗胜. 谷氨酰胺酶2在肿瘤中作用的研究现状和进展[J]. 外科理论与实践, 2020, 25(01): 88-91.
LIU Kangjun, ZHANG Chi, WANG Qian, PENG Rui, BAI Dousheng. Current status and progress in study on effect of glutaminase 2 on tumors[J]. Journal of Surgery Concepts & Practice, 2020, 25(01): 88-91.
[1] | Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells[J]. Curr Opin Genet Dev, 2009, 19(1):32-37. |
[2] | Ruiz-Perez MV, Sanchez-Jimenez F, Alonso FJ, et al. Glutamine, glucose and other fuels for cancer[J]. Curr Pharm Des, 2014, 20(15):2557-2579. |
[3] |
Matés JM, Segura JA, Martín-Rufián M, et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer[J]. Curr Mol Med, 2013, 13(4):514-534.
pmid: 22934847 |
[4] |
Márquez J, Matés JM, Campos-Sandoval JA. Glutamina-ses[J]. Adv Neurobiol, 2016, 13:133-171.
pmid: 27885629 |
[5] | Martín-Rufián M, Tosina M, Campos-Sandoval JA, et al. Mammalian glutaminase Gls2 gene encodes two func-tional alternative transcripts by a surrogate promoter usage mechanism[J]. PloS One, 2012, 7(6):e38380. |
[6] | Szeliga M, Bogacińska-Karaś M, RÓzycka A, et al. Silencing of GLS and overexpression of GLS2 genes coo-perate in decreasing the proliferation and viability of glioblastoma cells[J]. Tumor Biol, 2014, 35(3):1855-1862. |
[7] |
Aledo JC, GÓmez-Fabre PM, Olalla L, et al. Identification of two human glutaminase loci and tissue-specific expression of the two related genes[J]. Mamm Genome, 2000, 11(12):1107-1110.
pmid: 11130979 |
[8] | Majewska E, Márquez J, Albrecht J, et al. Transfection with GLS2 glutaminase (GAB) sensitizes human glioblastoma cell lines to oxidative stress by a common mechanism involving suppression of the PI3K/AKT pathway[J]. Cancers (Basel), 2019, 11(1). pii: E115. |
[9] |
Juan L, Cen Z, Meihua L, et al. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma[J]. Oncotarget, 2014, 5(9):2635-2647.
doi: 10.18632/oncotarget.1862 pmid: 24797434 |
[10] | Lukey MJ, Cluntun AA, Katt WP, et al. Liver-type glutaminase GLS2 Is a druggable metabolic node in luminal-subtype breast cancer[J]. Cell Rep, 2019, 29(1):76-88. |
[11] | Márquez J, Matés JM, Alonso FJ, et al. Canceromics studies unravel tumor's glutamine addiction after metabolic reprogramming[M]// Mazurek S, Shoshan M. Tumor Cell Metabolism. Vienna:Springer, 2015:257-286. |
[12] |
DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer[J]. Oncogene, 2010, 29(3):313-324.
doi: 10.1038/onc.2009.358 pmid: 19881548 |
[13] |
Stalnecker CA, Ulrich SM, Li Y, et al. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells[J]. Proc Natl Acad Sci U S A, 2015, 112(2):394-399.
doi: 10.1073/pnas.1414056112 pmid: 25548170 |
[14] |
Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?[J]. Cell Cycle, 2010, 9(19):3884-3886.
pmid: 20948290 |
[15] | Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type[J]. Cell Metab, 2012, 15(2):157-170. |
[16] |
Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16(11):749.
doi: 10.1038/nrc.2016.114 pmid: 28704361 |
[17] | GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans[J]. Science, 2015, 348(6235):648-660. |
[18] | Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species[J]. Proc Natl Acad Sci U S A, 2010, 107(16):7461-7466. |
[19] | Xiao D, Ren P, Su H, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2[J]. Oncotarget, 2015, 6(38):40655-40666. |
[20] | Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function[J]. Proc Natl Acad Sci U S A, 2010, 107(16):7455-7460. |
[21] | Yu D, Shi X, Meng G, et al. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma[J]. Oncotarget, 2015, 6(10):7619-7631. |
[22] | Márquez J, de la Oliva AR, Matés JM, et al. Glutaminase: a multifaceted protein not only involved in generating glutamate[J]. Neurochem Int, 2006, 48(6):465-471. |
[23] | Kuo TC, Chen CK, Hua KT, et al. Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells[J]. Cancer letters, 2016, 383(2):282-294. |
[24] | Zhang C, Liu J, Zhao Y et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis[J]. Elife, 2016, 5:e10727. |
[25] | Tania V, Francesco R, Paola T, et al. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation[J]. Cell Cycle, 2013, 12(22):3564-3573. |
[26] |
Szeliga M, Zgrzywa A, Obara-Michlewska M, et al. Transfection of a human glioblastoma cell line with liver-type glutaminase (LGA) down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents[J]. J Neurochem, 2012, 123(3):428-436.
doi: 10.1111/j.1471-4159.2012.07917.x pmid: 22888977 |
[27] | Niu Y, Zhang J, Tong Y, et al. Physcion 8-O-beta-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer[J]. Life Sci, 2019, 237:116893. |
[28] | Xiang L, Xie G, Liu C, et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation[J]. Biochim Biophys Acta, 2013, 1833(12):2996-3005. |
[29] | Ramirez-Peña E, Arnold J, Shivakumar V, et al. The epithelial to mesenchymal transition promotes glutamine independence by suppressing GLS2 expression[J]. Cancers(Basel), 2019, 11(10).pii:E1610. |
[30] | 李妮. 缺氧诱导因子1α调控2型谷氨酰胺酶促进结肠癌耐药的机制及临床意义研究[D]. 重庆: 第三军医大学, 2016. |
[1] | 陈娅, 周慧. 血液肿瘤患者焦虑抑郁现状及与治疗信心的相关性研究[J]. 组织工程与重建外科杂志, 2023, 19(1): 59-. |
[2] | 李朝军, 王永灵, 廖明娟, 等. 中西医结合治疗方案在口腔颌面头颈部肿瘤术后创面修复中的应用[J]. 组织工程与重建外科杂志, 2023, 19(1): 10-. |
[3] | 贺文, 顾建华, 邢戌健, 翁子毅, 费健. 术中发现气管憩室2例病例报告并文献复习[J]. 外科理论与实践, 2023, 28(04): 383-387. |
[4] | 朱颖, 汤玉茗, 黄佳, 章永平, 姚玮艳. 全反式维A酸可促进肿瘤相关诱导配体对多种胰腺癌细胞的凋亡作用[J]. 内科理论与实践, 2023, 18(03): 171-176. |
[5] | 高攀, 蔡云强, 彭兵. 保留功能的腹腔镜胰头部及十二指肠乳头肿瘤切除手术[J]. 外科理论与实践, 2023, 28(03): 190-196. |
[6] | 韩序, 王文权, 楼文晖, 刘亮. 免疫检查点抑制剂治疗胃肠胰神经内分泌肿瘤的进展[J]. 外科理论与实践, 2023, 28(03): 267-272. |
[7] | 罗方秀, 马乾宸, 袁菲. 第5版WHO消化系统肿瘤分类解读:胆道系统肿瘤的更新及进展[J]. 外科理论与实践, 2023, 28(02): 124-131. |
[8] | 孔韦奇, 何俊, 杨成广, 刘微薇, 徐英杰. 嗜铬细胞瘤合并甲状腺乳头状癌(附1例报告)[J]. 外科理论与实践, 2023, 28(02): 162-165. |
[9] | 卢一鸣, 熊建平, 田艳涛. 晚期胃癌转化治疗的发展现状与研究前景[J]. 外科理论与实践, 2023, 28(01): 17-23. |
[10] | 陈国群, 蔡姣迪. 2022年美国国立综合癌症网络(NCCN)《非小细胞肺癌临床诊疗指南》(第4版及第5版)解读[J]. 诊断学理论与实践, 2023, 22(01): 8-13. |
[11] | 戴志兵 麦尔旦江·麦合木提 孙亚超 江仁兵. 胸壁巨大肿瘤切除与修复重建[J]. 组织工程与重建外科杂志, 2022, 18(6): 470-. |
[12] | 朱芳 徐喆 王先明 宋达疆 李赞 何建怀 屈洪波. 乳腺癌根治术后即刻行扩大背阔肌肌皮瓣乳房再造50例分析[J]. 组织工程与重建外科杂志, 2022, 18(5): 377-. |
[13] | 钟民衎 崔锡炜 顾斌 李青峰 王智超. Ⅰ型神经纤维瘤病相关眼眶-眶周型丛状神经纤维瘤的临床治疗进展[J]. 组织工程与重建外科杂志, 2022, 18(2): 179-. |
[14] | 陈骏, 罗成华. 腹膜后肿瘤外科发展的历史、现状与前景展望[J]. 外科理论与实践, 2022, 27(06): 490-494. |
[15] | 王坚. 腹膜后肿瘤的病理诊断与鉴别诊断[J]. 外科理论与实践, 2022, 27(06): 500-505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||