1. |
K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In 2O 3 heterostructures. J. Hazard. Mater. 391, 122191 ( 2020). https://doi.org/10.1016/j.jhazmat.2020.122191
|
2. |
Y.M. Jo, Y.K. Jo, J.H. Lee, H.W. Jang, I.S. Hwang et al., MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 35, e2206842 ( 2023). https://doi.org/10.1002/adma.202206842
|
3. |
|
4. |
D. Zhang, C. Jiang, J. Liu, Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuat. B Chem. 247, 875-882 ( 2017). https://doi.org/10.1016/j.snb.2017.03.108
|
5. |
O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32, 2113348 ( 2022). https://doi.org/10.1002/adfm.202113348
|
6. |
L.-Y. Gai, R.-P. Lai, X.-H. Dong, X. Wu, Q.-T. Luan et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41, 1818-1842 ( 2022). https://doi.org/10.1007/s12598-021-01937-4
|
7. |
|
8. |
F. Meng, Y. Chang, W. Qin, Z. Yuan, J. Zhao et al., ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2, 2734-2742 ( 2019). https://doi.org/10.1021/acsanm.9b00257
|
9. |
C. Qin, Y. Wang, Y. Gong, Z. Zhang, J. Cao, CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. J. Alloys Compd. 770, 972-980 ( 2019). https://doi.org/10.1016/j.jallcom.2018.08.205
|
10. |
H. Jiang, L. Tong, H. Liu, J. Xu, S. Jin et al., Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals. Matter 2, 1535-1549 ( 2020). https://doi.org/10.1016/j.matt.2020.03.003
|
11. |
J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen et al., Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3, 1655-1661 ( 2018). https://doi.org/10.1021/acsenergylett.8b00809
|
12. |
Y.-J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Laser-induced annealing of metal-organic frameworks on conductive substrates for electrochemical water splitting. Adv. Funct. Mater. 31, 2102648 ( 2021). https://doi.org/10.1002/adfm.202102648
|
13. |
R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11, 5293-5308 ( 2017). https://doi.org/10.1021/acsnano.7b02796
|
14. |
Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe 2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. J. Alloys Compd. 860, 158252 ( 2021). https://doi.org/10.1016/j.jallcom.2020.158252
|
15. |
D. Wang, D. Zhang, Q. Pan, T. Wang, F. Chen, Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature. Sens. Actuat. B Chem. 371, 132481 ( 2022). https://doi.org/10.1016/j.snb.2022.132481
|
16. |
X. Cui, X. Tian, X. Xiao, T. Chen, Y. Wang, Au modified hollow cube Sn-MOF derivatives for highly sensitive, great selective, and stable detection of n-butanol at room temperature. Adv. Mater. Technol. 8, 2300572 ( 2023). https://doi.org/10.1002/admt.202300572
|
17. |
H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, e1807161 ( 2019). https://doi.org/10.1002/adma.201807161
|
18. |
J. Bang, Y. Jung, H. Kim, D. Kim, M. Cho et al., Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano-Micro Lett. 14, 49 ( 2022). https://doi.org/10.1007/s40820-021-00786-1
|
19. |
M.-S. Yao, X.-J. Lv, Z.-H. Fu, W.-H. Li, W.-H. Deng et al., Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 56, 16510-16514 ( 2017). https://doi.org/10.1002/anie.201709558
|
20. |
X. Song, X. Wang, Y. Li, C. Zheng, B. Zhang et al., 2D semiconducting metal-organic framework thin films for organic spin valves. Angew. Chem. Int. Ed. 59, 1118-1123 ( 2020). https://doi.org/10.1002/anie.201911543
|
21. |
J. Liu, C. Wöll, Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730-5770 ( 2017). https://doi.org/10.1039/C7CS00315C
|
22. |
H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, e1705148 ( 2018). https://doi.org/10.1002/adma.201705148
|
23. |
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137, 13780-13783 ( 2015). https://doi.org/10.1021/jacs.5b09600
|
24. |
S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 ( 2020). https://doi.org/10.1002/adma.202002075
|
25. |
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi 2S 3 nanosheets. Nano-Micro Lett. 14, 8 ( 2021). https://doi.org/10.1007/s40820-021-00740-1
|
26. |
K.W. Nam, S.S. Park, R. Dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 ( 2019). https://doi.org/10.1038/s41467-019-12857-4
|
27. |
H. Lim, H. Kwon, H. Kang, J.E. Jang, H.J. Kwon, Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO 2 monitoring. Nat. Commun. 14, 3114 ( 2023). https://doi.org/10.1038/s41467-023-38918-3
|
28. |
D. Su, X. Xie, S. Dou, G. Wang, CuO single crystal with exposed{001}facets: a highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 ( 2014). https://doi.org/10.1038/srep05753
|
29. |
|
30. |
H. Jiang, S. Jin, C. Wang, R. Ma, Y. Song et al., Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 141, 5481-5489 ( 2019). https://doi.org/10.1021/jacs.9b00355
|
31. |
S. Guo, Y. Zhao, H. Yuan, C. Wang, H. Jiang et al., Ultrafast laser manufacture of stable, efficient ultrafine noble metal catalysts mediated with MOF derived high density defective metal oxides. Small 16, e2000749 ( 2020). https://doi.org/10.1002/smll.202000749
|
32. |
|
33. |
J. Kim, K. Ko, H. Kwon, J. Suh, H.-J. Kwon et al., Channel scaling dependent photoresponse of copper-based flexible photodetectors fabricated using laser-induced oxidation. ACS Appl. Mater. Interfaces 14, 6977-6984 ( 2022). https://doi.org/10.1021/acsami.1c21296
|
34. |
|
35. |
Y. Kim, T. Kim, J. Lee, Y.S. Choi, J. Moon et al., Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platform. Adv. Mater. 33, e2004827 ( 2021). https://doi.org/10.1002/adma.202004827
|
36. |
|
37. |
H.-H. Lin, C.-Y. Wang, H.C. Shih, J.-M. Chen, C.-T. Hsieh, Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J. Appl. Phys. 95, 5889-5895 ( 2004). https://doi.org/10.1063/1.1690114
|
38. |
|
39. |
H. Yang, J. Li, D. Yu, L. Li, Seed/catalyst free growth and self-powered photoresponse of vertically aligned ZnO nanorods on reduced graphene oxide nanosheets. Cryst. Growth Des. 16, 4831-4838 ( 2016). https://doi.org/10.1021/acs.cgd.6b00034
|
40. |
D. Zhang, H. Chang, P. Li, R. Liu, Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron. 27, 3723-3730 ( 2016). https://doi.org/10.1007/s10854-015-4214-6
|
41. |
P. Tiwary, S.G. Chatterjee, S.S. Singha, R. Mahapatra, A.K. Chakraborty, Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 30, 100317 2021). https://doi.org/10.1016/j.flatc.2021.100317
|
42. |
C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 ( 2022). https://doi.org/10.1007/s40820-022-00837-1
|