|
|
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion |
Tian Mai1, Lei Chen1, Pei-Lin Wang1, Qi Liu1, Ming-Guo Ma1,2( )( ) |
1 Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China 2 State Silica-Based Materials Laboratory of Anhui Province, Bengbu, 233000, People's Republic of China |
|
|
Abstract With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1-4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm−2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
|
Received: 07 January 2024
Published: 08 April 2024
|
Corresponding Authors:
Ming-Guo Ma
|
|
|
|
|
Fig. 1 Schematic diagrams of synthesis of HMN composite films by AVAF strategy. The fabrication process of a Co-HCC, b d-Ti3C2Tx, and c HMN composite films
|
|
Fig. 2 Microstructure of the HMN composite films. a TEM image and b EDS line scanning image of Co-HCC, respectively. c TEM image and d size distribution of TOCNFs, respectively. e TEM image and f lattice fringe of d-Ti3C2Tx nanosheets, respectively. g, h SEM image, i schematic illustration, and j EDS mapping of HMN composite films
|
|
Fig. 3 The crystallographic structure and composition of the HMN composite films. a XRD patterns and b Raman patterns of ZIF-8@ZIF-67 before and after pyrolysis, respectively. c XRD patterns and d FTIR spectra of HMN composite films, TOCNFs, Co-HCC, and d-Ti3C2Tx, respectively. e TG and DTG analysis of HMN composite films. f The nitrogen adsorption-desorption isotherms of ZIF-8@ZIF-67 and Co-HCC. g XPS full spectra of d-Ti3C2Tx and Co-HCC. XPS fine spectra of h Ti 2p of d-Ti3C2Tx and i Co 2p of Co-HCC
|
|
Fig. 4 Electromagnetic properties and gigahertz electromagnetic shielding performances of HMN composite films. a-c Conductivity and magnetism of HMN-5L-57.1% composite films. d EMI SE of HMN composite films with different d-Ti3C2Tx contents. e, f EMI SE of HMN composite films with different numbers of layers. g Schematic diagram and EMI SE of HMN-5L-57.1% composite films when the electromagnetic waves are incident from different directions, respectively. h X, Ku, K, and Ka-band EMI SE of HMN-5L-57.1% composite films
|
|
Fig. 5 Terahertz electromagnetic shielding performances of HMN composite films. a, d THz time domain pulses for air, Al mirror, and HMN composite films in transmission model and reflection model. b, e Electric field intensity for air, Al plate, and HMN composite films in transmission model and reflection model. c, f EMI SE and reflection loss of HMN composite films in transmission model and reflection model. g, h Terahertz imaging thermogram of transmission mode and reflection mode
|
|
Fig. 6 EMI simulated visually and EMI shielding mechanism. a Schematic diagram of the EMI simulated visually and Tesla coil circuit diagram. b Tesla coil experiment of HMN composite films. c Electromagnetic shielding detector EMI performance and d experiment of HMN composite films. e Schematic diagram of the EMI shielding mechanism of HMN composite films. f Comparison of the EMI SE with other materials (sample numbers listed in Table S2 in Supporting Information)
|
|
Fig. 7 Photothermal conversion performances of HMN composite films. a UV-Vis-NIR absorbance spectrum of HMN composite films. b Surface temperature curves for the HMN composite films under different solar intensity. c Solar-heating performance of HMN composite films in 3 cycles with an applied solar intensity of 1.0 Sun. d Infrared thermographic photographs of HMN composite films under 2.0 Sun (upper) and NIR irradiation (lower) under 0.8 W cm−2 at different time intervals. e Surface temperature curves for the HMN composite films under different 808 NIR power densities. f Temperature evolution of HMN composite films at different 808 NIR laser power densities. g Schematic diagram of HMN composite films irradiated by simulant photothermal
|
1. | F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137-1140 (2016). | 2. | Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). | 3. | C. Ma, Q. Yuan, M.-G. Ma, MXenes for electromagnetic interference (EMI) shielding. Fundamental Aspects and Perspectives of MXenes. (Springer, Cham, 2022), 219-240. | 4. | P.-L. Wang, T. Mai, X.-X. Ji, P. Hu, M.-G. Ma, Aerogel-based composites for electromagnetic interface shielding applications. Compos. Interfaces 29, 1483-1503 (2022). | 5. | Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 33, e2007286 (2021). | 6. | J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). | 7. | Q. Lu, Y. Chen, W. Song, C. Tao, J. Zhang et al., Mechanistic role of γ-valerolactone co-solvent to promote ethyl levulinate production from cellulose transformation in ethanol. Fuel 346, 128371 (2023). | 8. | Z. Zhang, T. Yuan, Y. Miao, Q. Liu, J. Mu et al., Carboxyl-functionalized graphene oxide/cellulose nanofiber as adsorbents toward methylene blue. Chem. Phys. Lett. 837, 141064 (2024). | 9. | M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248-4253 (2011). | 10. | F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, e2002159 (2020). | 11. | M.M. Hasan, M.M. Hossain, H.K. Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231-3269 (2021). | 12. | Z. Liu, J. Chen, M. Que, H. Zheng, L. Yang et al., 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 450, 138442 (2022). | 13. | Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). | 14. | H. Zhang, X.-Y. Zheng, R. Jiang, Z. Liu, W. Li et al., Research progress of functional composite electromagnetic shielding materials. Eur. Polym. J. 185, 111825 (2023). | 15. | Y. Fei, M. Liang, Y. Chen, H. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4-C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 154-165 (2020). | 16. | Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). | 17. | W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). | 18. | G. Hu, C. Wu, Q. Wang, F. Dong, Y. Xiong, Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties. Chem. Eng. J. 447, 137537 (2022). | 19. | Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610-2618 (2018). | 20. | Z. Xiang, X. Wang, X. Zhang, Y. Shi, L. Cai et al., Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 189, 305-318 (2022). | 21. | Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). | 22. | Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). | 23. | Z. Huang, H. Chen, S. Xu, L.Y. Chen, Y. Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018). | 24. | P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Smal 20, e2304914 (2024). | 25. | Y. Sun, H. Jia, J. Liu, H. Yu, X. Jiang, Metal-organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. J. Mater. Sci. Mater. Electron. 31, 11700-11713 (2020). | 26. | R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384-393 (2016). | 27. | P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800-10805 (2016). | 28. | Y. Fan, C. Zhuang, S. Li, Y. Wang, X. Zou et al., Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 9, 1110-1118 (2021). | 29. | B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal-organic framework-derived bifunctional oxygenelectrocatalyst. Nat. Energy 1, 15006 (2016). | 30. | Y. Fan, S. Li, Y. Wang, C. Zhuang, X. Liu et al., Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol. Nanoscale 12, 18296-18304 (2020). | 31. | C. Ma, T. Mai, P.-L. Wang, W.-Y. Guo, M.-G. Ma, Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion. ACS Appl. Mater. Interfaces 15, 47425-47433 (2023). | 32. | H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). | 33. | T. Mai, P.-L. Wang, Q. Yuan, C. Ma, M.-G. Ma, In situ anchoring Zn-doped ZIF-67 on carboxymethylated bacterial cellulose for effective indigo carmine capture. Nanoscale 13, 18210-18217 (2021). | 34. | Z. Guang, Y. Huang, C. Chen, X. Liu, Z. Xu et al., Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem. Eng. J. 383, 123163 (2020). | 35. | E. Duraisamy, H.T. Das, A. Selva Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@carbon nanocomposite. New J. Chem. 42, 6114-6124 (2018). | 36. | M.-Y. Qi, P.-L. Wang, L.-Z. Huang, Q. Yuan, T. Mai et al., Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills. Int. J. Biol. Macromol. 242, 124895 (2023). | 37. | L. Luo, Z. Fang, W. Zhang, S. Geng, B. Chen et al., Preparation of methylated TEMPO-oxidized cellulose nanofibril hydrogel with high-temperature sensitivity. Cellulose 29, 8599-8609 (2022). | 38. | T. Mai, W.Y. Guo, P.L. Wang, L. Chen, M.Y. Qi et al., Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 464, 142517 (2023). | 39. | Q.-W. Wang, H.-B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). | 40. | S.A. Al Kiey, H.N. Abdelhamid, Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. J. Energy Storage 55, 105449 (2022). | 41. | Z. Zhang, D. Li, J. Wang, J. Jiang, Cascade upcycling polystyrene waste into ethylbenzene over Fe2N@C. Appl. Catal. B Environ. 323, 122164 (2023). | 42. | D.-D. Li, Q. Yuan, L.-Z. Huang, W. Zhang, W.-Y. Guo et al., Preparation of flexible N-doped carbon nanotube/MXene/PAN nanocomposite films with improved electrochemical properties. Ind. Eng. Chem. Res. 60, 15352-15363 (2021). | 43. | N. Jia, D. Li, G. Huang, J. Sun, P. Lu et al., Carbon fibers-coated Co@N-doped porous carbon derived from ZIF-67/alginate fibers for efficient oxygen reduction reaction. J. Photonics Energy 10(2), 023507 (2020). | 44. | S. Yi, X. Yue, D. Xu, Z. Liu, F. Zhao et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions. New J. Chem. 39, 2917-2924 (2015). | 45. | W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748-3756 (2017). | 46. | Y. Wang, W. Zhao, L. Tan, Y. Li, L. Qin et al., Review of polymer-based composites for electromagnetic shielding application. Molecules 28, 5628 (2023). | 47. | X. Pei, G. Liu, H. Shi, R. Yu, S. Wang et al., Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 233, 109909 (2023). | 48. | S.M. Seyedi Ghezghapan, A. Javadi, Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites. Polym. Compos. 38, E269-E276 (2017). | 49. | B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895-4905 (2020). | 50. | T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). | 51. | B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). | 52. | X. Li, H. Luo, Maximizing terahertz energy absorption with MXene absorber. Nano-Micro Lett. 15, 198 (2023). | 53. | A.R. Pai, Y. Lu, S. Joseph, N.M. Santhosh, R. Degl’Innocenti et al., Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: A paradigm shift towards sustainable terahertz absorbers. Chem. Eng. J. 467, 143213 (2023). | 54. | H.M. Schlicke, Theory of simulated-skin-effect filters a thin film approach to EMI. IEEE Trans. Electromagn. Compat. 6, 47-54 (1964). | 55. | B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411-420 (2021). | 56. | L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). | 57. | B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023). | 58. | B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). | 59. | B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). | 60. | B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8, 500-509 (2020). | 61. | C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 13, 181 (2021). | 62. | D. Gao, S. Guo, Y. Zhou, B. Lyu, X. Li et al., Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps. ACS Appl. Mater. Interfaces 14, 38077-38089 (2022). | 63. | J.-R. Tao, X.-H. Tang, Q.-M. He, M. Wang, Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/Poly(ε-caprolactone) composites. Compos. Sci. Technol. 229, 109715 (2022). | 64. | H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 306(6), 2100032 (2021). | 65. | S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570-23579 (2022). | 66. | B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401-7410 (2020). | 67. | H. Liu, Z. Cui, L. Luo, Q. Liao, R. Xiong et al., Facile fabrication of flexible and ultrathin self-assembled Ti3C2Tx/bacterial cellulose composite films with enhanced electromagnetic shielding and photothermal conversion performances. Chem. Eng. J. 454, 140288 (2022). | 68. | Y. Gao, J. Lin, X. Chen, Z. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19, e2303113 (2023). | 69. | S. Ding, L. Ma, J. Feng, Y. Chen, D. Yang et al., Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 15, 2715-2721 (2022). | 70. | J. Ye, Y. Wang, L. Luo, K. Qian, J. Zhou et al., Carbon nanotube films embedded with Cu@C nanocubes for electromagnetic interference shielding. J. Polym. Sci. 61, 2688-2696 (2023). | 71. | L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). |
|
[1] |
Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization[J]. Nano-Micro Letters, 2024, 16(1): 175-. |
[2] |
Ting-Ting Liu, Qi Zheng, Wen-Qiang Cao, Yu-Ze Wang, Min Zhang, Quan-Liang Zhao, Mao-Sheng Cao. In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum[J]. Nano-Micro Letters, 2024, 16(1): 173-. |
[3] |
Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171-. |
[4] |
Shaodian Yang, Zhiqiang Lin, Ximiao Wang, Junhua Huang, Rongliang Yang, Zibo Chen, Yi Jia, Zhiping Zeng, Zhaolong Cao, Hongjia Zhu, Yougen Hu, Enen Li, Huanjun Chen, Tianwu Wang, Shaozhi Deng, Xuchun Gui. Stretchable, Transparent, and Ultra-Broadband Terahertz Shielding Thin Films Based on Wrinkled MXene Architectures[J]. Nano-Micro Letters, 2024, 16(1): 165-. |
[5] |
Weiyan Yu, Yi Yang, Yunjing Wang, Lulin Hu, Jingcheng Hao, Lu Xu, Weimin Liu. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation[J]. Nano-Micro Letters, 2024, 16(1): 94-. |
[6] |
Zerui Chen, Wei Zhao, Qian Liu, Yifei Xu, Qinghe Wang, Jinmin Lin, Hao Bin Wu. Janus Quasi-Solid Electrolyte Membranes with Asymmetric Porous Structure for High-Performance Lithium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 114-. |
[7] |
Hyeongtae Lim, Hyeokjin Kwon, Hongki Kang, Jae Eun Jang, Hyuk-Jun Kwon. Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature[J]. Nano-Micro Letters, 2024, 16(1): 113-. |
[8] |
Ze Wu, Xiuli Tan, Jianqiao Wang, Youqiang Xing, Peng Huang, Bingjue Li, Lei Liu. MXene Hollow Spheres Supported by a C-Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption[J]. Nano-Micro Letters, 2024, 16(1): 107-. |
[9] |
Hailong Ma, Huajing Fang, Xinxing Xie, Yanming Liu, He Tian, Yang Chai. Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual-Olfactory Crossmodal Perception[J]. Nano-Micro Letters, 2024, 16(1): 104-. |
[10] |
Leqi Lei, Shuo Meng, Yifan Si, Shuo Shi, Hanbai Wu, Jieqiong Yang, Jinlian Hu. Wettability Gradient-Induced Diode: MXene-Engineered Membrane for Passive-Evaporative Cooling[J]. Nano-Micro Letters, 2024, 16(1): 159-. |
[11] |
Ximeng Liu, Dan Zhao, John Wang. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework[J]. Nano-Micro Letters, 2024, 16(1): 157-. |
[12] |
Siavash Iravani, Rajender S. Varma. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond[J]. Nano-Micro Letters, 2024, 16(1): 142-. |
[13] |
Jianmin Yang, Li Chang, Xiqi Zhang, Ziquan Cao, Lei Jiang. Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes[J]. Nano-Micro Letters, 2024, 16(1): 140-. |
[14] |
Poushali Das, Parham Khoshbakht Marvi, Sayan Ganguly, Xiaowu (Shirley) Tang, Bo Wang, Seshasai Srinivasan, Amin Reza Rajabzadeh, Andreas Rosenkranz. MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications[J]. Nano-Micro Letters, 2024, 16(1): 135-. |
|
|
|
|