诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (02): 131-138.doi: 10.16150/j.1671-2870.2024.02.006
收稿日期:
2024-02-13
出版日期:
2024-04-25
发布日期:
2024-07-04
通讯作者:
黄娟 E-mail:hj11722@rjh.com.cn基金资助:
LÜ Xiaoyu, FENG Weiming, ZHOU Huiyun, LI Jiqiang, DONG Haipeng, HUANG Juan()
Received:
2024-02-13
Published:
2024-04-25
Online:
2024-07-04
摘要:
目的:旨在评估深度学习重建(deep learning reconstruction, DLR)算法在缩短磁共振成像(magnetic resonance imaging, MRI)扫描时间方面的应用潜力。方法:利用水模,采用控制变量法描绘扫描时间随着激励次数(number of excitation,NEX)、矩阵、l-to-noise ratio,SNR)及主观图像质量变化(包括锐利度及细节清晰度、失真度的四分制评估),并描绘变化曲线、计算拟合曲线。结果:在传统重建和不同降噪水平的DLR重建中,NEX和分辨率与MRI扫描时间和SNR之间存在正相关性。在相同的NEX和分辨率条件下,传统重建、DLR_L、DLR_M和DLR_H的SNR依次升高。以主观评价3或者4分为令人满意的图像,当矩阵固定为512×512时,不同NEX值下,DLR重建的图像在锐利度、失真度和细节显示方面均表现出色,且在NEX为3、5、7和11时,图像细节显示最佳,同时显著缩短了扫描时间。当NEX为2、4、5、6时,图像的失真令人满意,当NEX为3、5、7和11时,可获得满意的细节显示。以上所有组合,可节省扫描时间31~244 s。随着分辨率的增加,图像质量在锐利度、失真度和细节显示方面均有所提升,失真度较低。当NEX固定为6时,DLR_H、DLR_M、DLR_L及传统重建的图像分别在矩阵为320×320、384×384、448×448及640×640时,即扫描时间分别为141 s、141 s、187 s及232 s时,可获得令人满意的锐利度。DLR_H和DLR_M在512×512矩阵下实现了较小的失真度,而DLR_L和传统重建需要更高的成像矩阵和更长的扫描时间以获得类似的图像质量。对于细节显示的清晰度,DLR_H在512×512矩阵下的表现尤为突出,扫描时间少于DLR_M、DLR_L及传统重建。结论:DLR,特别是DLR_H,可在降低NEX和分辨率以缩短MRI扫描时间的同时,不仅能保持令人满意的SNR和图像细节显示,还有可能实现更高的图像清晰度和更低的失真度。
中图分类号:
吕晓宇, 冯威铭, 周慧赟, 李纪强, 董海鹏, 黄娟. 基于磁共振深度学习重建算法缩短扫描时间的可行性分析:水模研究[J]. 诊断学理论与实践, 2024, 23(02): 131-138.
LÜ Xiaoyu, FENG Weiming, ZHOU Huiyun, LI Jiqiang, DONG Haipeng, HUANG Juan. Feasibility of reducing scan time based on deep learning reconstruction in magnetic resonance imaging: a phantom study[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 131-138.
表1
扫描参数表
Item | Matrix | In-plane voxel size (mm) | In-plane voxel volume(mm3) | NEX | Scan time(s) |
---|---|---|---|---|---|
Part 1 | 512×512 | 0.47 | 0.66 | 1 | 35 |
512×512 | 0.47 | 0.66 | 2 | 65 | |
512×512 | 0.47 | 0.66 | 3 | 95 | |
512×512 | 0.47 | 0.66 | 4 | 126 | |
512×512 | 0.47 | 0.66 | 5 | 156 | |
512×512 | 0.47 | 0.66 | 6 | 187 | |
512×512 | 0.47 | 0.66 | 7 | 217 | |
512×512 | 0.47 | 0.66 | 8 | 247 | |
512×512 | 0.47 | 0.66 | 9 | 278 | |
512×512 | 0.47 | 0.66 | 10 | 308 | |
512×512 | 0.47 | 0.66 | 11 | 339 | |
512×512 | 0.47 | 0.66 | 12 | 369 | |
512×512 | 0.47 | 0.66 | 13 | 399 | |
512×512 | 0.47 | 0.66 | 14 | 430 | |
512×512 | 0.47 | 0.66 | 15 | 460 | |
512×512 | 0.47 | 0.66 | 16 | 491 | |
Part 2 | 128×128 | 1.88 | 10.55 | 6 | 50 |
192×192 | 1.25 | 4.69 | 6 | 95 | |
256×256 | 0.94 | 2.64 | 6 | 95 | |
320×320 | 0.75 | 1.69 | 6 | 141 | |
384×384 | 0.63 | 1.17 | 6 | 141 | |
448×448 | 0.54 | 0.86 | 6 | 141 | |
512×512 | 0.47 | 0.66 | 6 | 187 | |
640×640 | 0.38 | 0.42 | 6 | 232 | |
768×768 | 0.31 | 0.29 | 6 | 232 | |
896×896 | 0.27 | 0.22 | 6 | 278 | |
1 024×1 024 | 0.23 | 0.16 | 6 | 647 |
图3
主观图像质量令人满意时的扫描参数 图像进行了不同降噪水平(DLR_H、DLR_M、DLR_L)和常规重建(ConR)的重建。研究结果表明,深度学习重建,特别是LR_H,显示出更高的SNR、清晰度和细节清晰度,同时减少了NEX和分辨率,从而减少了扫描时间。A:固定扫描分辨率(矩阵:512×512)获得图像。值得注意的是,当矩阵大小保持在512×512,最大细节清晰度得分仍为3。B:当固定NEX为6时,为了达到最佳细节清晰度(得分=4),平面内最小分辨率需达0.38 mm×0.38 mm。DLR_H、DLR_M、DLR_L:高/中/低降噪水平的深度学习重建,ConR:常规重建图像;Res:分辨率;NEX:激励次数;SNR:信噪比。
[1] | RUSSO V, LOVATO L, LIGABUE G. Cardiac MRI: technical basis[J]. Radiol Med, 2020, 125(11):1040-1055. |
[2] | DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. |
[3] |
DESHMANE A, GULANI V, GRISWOLD M A, et al. Parallel MR imaging[J]. J Magn Reson Imaging, 2012, 36(1):55-72.
doi: 10.1002/jmri.23639 pmid: 22696125 |
[4] | 郭效宾, 柯腾飞, 刘一帆, 等. 磁共振压缩感知技术在肿瘤影像检查中应用[J]. 放射学实践, 2020, 35(12):1635-1638. |
GUO X B, KE T F, LIU Y F, et al. The application of magnetic resonance compressed sensing technology in tumor imaging examination.[J] Radiol Pract, 2020, 35(12): 1635-8. | |
[5] |
LIBERMAN G, SOLOMON E, LUSTIG M, et al. Multiple-coil k-space interpolation enhances resolution in single-shot spatiotemporal MRI[J]. Magn Reson Med, 2018, 79(2):796-805.
doi: 10.1002/mrm.26731 pmid: 28556180 |
[6] | 严福华. 深度学习MRI重建算法的临床应用和发展前景[J]. 磁共振成像, 2023, 14(5):8-10. |
YAN F H. The clinical application and development prospect of deep learning MRI reconstruction algorithm[J]. Chin J Magn Reson Imag, 2023, 14(5):8-10. | |
[7] | 刘高平, 曲太平, 许强, 等. 基于深度学习重建常规头部2D T1WI超分辨率图像质量[J]. 中国医学影像技术, 2022, 38(3): 326-331. |
LIU G P, QU T P, XU Q, et al. Imaging quality of super-resolution reconstruction of conventional head 2D T1WI based on deep learning[J]. Chin J Med Imag Technol, 2022, 38(3): 326-331. | |
[8] |
宣锴, 王乾. 面向磁共振图像重建的k空间降采样优化[J]. 模式识别与人工智能, 2021, 34(4):367-374.
doi: 10.16451/j.cnki.issn1003-6059.202104009 |
XUAN K, WANG Q. Optimizing K-space subsampling pattern toward MRI reconstruction[J]. Pattern Recognit Artif Intell, 2021, 34(4):367-374. | |
[9] | LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. [2023-05-13]. https://www.baidu.com/link?url=XDD_QK0-r2gYithJyjWW_vbNytceiRHd9g_IMsUUeNIYFyIephWTH9uhbAyTeOTG&wd=&eqid=d3683c33001cda870000000566456e76. |
[10] |
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1):114-122.
doi: 10.1148/radiol.2020200723 pmid: 33141001 |
[11] | YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9):6118-6125. |
[12] | SPRAWLS P. Magnetic resonance imaging: principles, methods, and techniques[M]. Medical Physics Publishing Madison, 2000. |
[13] | 周楠, 花立春, 刘杰, 等. 深度学习重建法在MRI重建中的应用进展[J]. 中国医疗设备, 2023, 38(12):165-169. |
ZHOU N, HUA L C, LIU J, et al. Application of deep learning reconstruction in MRI reconstruction[J] China Med Devices, 2023, 38(12):165-169. | |
[14] | XIE Y, TAO H, LI X, et al. Prospective comparison of standard and deep learning-reconstructed turbo spin-echo MRI of the shoulder[J]. Radiology, 2024, 310(1):e231405. |
[15] | LEE K L, KESSLER D A, DEZONIE S, et al. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality[J]. Eur J Radiol, 2023, 166:111017. |
[16] |
ZERUNIAN M, PUCCIARELLI F, CARUSO D, et al. Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation[J]. Radiol Med, 2022, 127(10):1098-1105.
doi: 10.1007/s11547-022-01539-9 pmid: 36070066 |
[1] | 范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21(03): 374-379. |
[2] | 张雪坤, 李彦, 严福华, 赵洪飞, 宋琦. 基于光梭成像的新型加速技术在颅脑MRI中的应用价值研究[J]. 诊断学理论与实践, 2021, 20(04): 378-383. |
[3] | 常蕊, 杨琰昭, 孔德艳, 徐嘉旭, 曹琪琪, 杨文洁, 严福华, 董海鹏. 不同管电压、管电流扫描方案联合KARL迭代重建在新型冠状病毒肺炎疫情期间胸部CT筛查中的应用研究[J]. 诊断学理论与实践, 2020, 19(02): 182-187. |
[4] | 方姝, 杜联军, 秦乐, 董海鹏, 严福华, 王韬. 腰椎间盘低剂量CT扫描结合迭代模型重建的图像质量及诊断效能的研究[J]. 诊断学理论与实践, 2019, 18(03): 344-348. |
[5] | 王韬, 傅萌, 肖瑞杰, 董海鹏, 李若坤, 严福华. Multivane XD技术在肝脏T2WI成像中的应用价值[J]. 诊断学理论与实践, 2016, 15(05): 521-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||