诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (03): 336-342.doi: 10.16150/j.1671-2870.2022.03.008
张娟娟, 何亲羽, 杨媛艳, 董治亚, 肖园, 陈立芬, 张彩萍()
收稿日期:
2022-02-05
出版日期:
2022-06-25
发布日期:
2022-08-17
通讯作者:
张彩萍
E-mail:feelerzhang@126.com
ZHANG Juanjuan, HE Qinyu, YANG Yuanyan, DONG Zhiya, XIAO Yuan, CHEN Lifen, ZHANG Caiping()
Received:
2022-02-05
Online:
2022-06-25
Published:
2022-08-17
Contact:
ZHANG Caiping
E-mail:feelerzhang@126.com
摘要:
目的:分析1例以矮小伴语言运动发育迟缓为主要表现的Lamb-Shaffer综合征(Lamb-Shaffer syndrome,LAMSHF)患者的临床资料和基因检测结果,以提高临床医师对本病的认识。方法:分析本院收治的1例表现为严重身材矮小和语言运动发育迟缓的LAMSHF男性患儿,收集其临床资料,并抽取患儿及父母全血,提取基因组DNA进行全外显子测序及DNA Sanger测序。同时,在国内外数据库中检索相关文献,分析LAMSHF病例的临床特征、诊治方法及预后。结果:本例患儿9岁2个月,身高108.7 cm [-4.82个标准差(standard deviation,SD)],体重17.1 kg(<-2.1 SD),体质量指数14.5 kg/m2(-1.1 SD),大运动及语言发育延迟1年,实验室检查示胰岛素样生长因子水平为74 ng/mL(-2.14 SD),生长激素激发试验提示非生长激素缺乏,其他检查无异常。全外显子测序提示,患儿第12号染色体p12.1到p11.1位置(p12.1s;p11.1),存在至少10.4 Mb的拷贝数缺失,涉及SOX5等多个已知致病基因,发现该杂合变异来源于父源染色体,父母验证基因正常,提示该拷贝数变异为新发突变。遗传变异分类标准与指南指南评估该突变为可能致病[强致病证据(strong piece of evidence for pathogenicity,PS2)+中等致病证据(moderate piece of evidence for pathogenicity,PM1)],故诊断患儿为LAMSHF。收集分析11项研究共75例LAMSHF患者,LAMSHF的诊断依赖基因检测,且尚无明确的基因型-表型相关性,患者的智力障碍改善依赖于康复治疗。由于本病患者发生癫痫、眼征、肌张力减退风险较高,且有肿瘤倾向,预后不佳,对于矮小症状应避免使用生长激素。结论:LAMSHF的诊断依赖包括SOX5基因在内的基因检测。本例LAMSHF患儿携带目前已知的最大12p12.1缺失片段,且矮小程度最严重。临床上,对于合并智力异常的矮小症患儿,需进行SOX5突变及拷贝数变异筛查,同时治疗时应避免盲目使用生长激素带来的潜在危害。
中图分类号:
张娟娟, 何亲羽, 杨媛艳, 董治亚, 肖园, 陈立芬, 张彩萍. Lamb-Shaffer综合征表现为矮小症伴语言、运动发育迟缓一例及文献复习[J]. 诊断学理论与实践, 2022, 21(03): 336-342.
ZHANG Juanjuan, HE Qinyu, YANG Yuanyan, DONG Zhiya, XIAO Yuan, CHEN Lifen, ZHANG Caiping. Lamb-Shaffer syndrome presenting as short stature with delays in motor and language acquisition: a case report and literature review[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 336-342.
表1
先证者临床表型特征
项目 | 结果 |
---|---|
体格检查 | |
身高 | 108.7 cm |
体重 | 17.1 kg |
体块指数 | 14.5 kg/m2 |
实验室检验 | |
血尿常规、肝肾功能、 电解质、心肌酶谱、 血脂 | 正常 |
空腹血糖 | 5.67 mmol/L |
糖化血红蛋白 | 6% |
空腹胰岛素 | 6.42 μIU/mL |
内分泌 | |
生长激素激发 | 生长激素峰 10.383 ng/mL |
IGF-1 | 74 ng/mL |
甲状腺功能 | 三碘甲腺原氨酸1.65 nmol/L,甲状腺素 127.18 nmol/L,游离三碘甲腺原氨酸 4.55 pmol/L,游离甲状腺素17.38 pmol/L, 促甲状腺素3.568 4 μIU/mL |
促肾上腺皮质激素 | 19.92 pg/mL |
皮质醇(8 Am) | 7.56 μg/dL |
硫酸脱氢表雄酮 | 50.70 μg/dL |
肿瘤标志物 | |
甲胎蛋白 | 0.48 ng/mL |
癌胚抗原 | 1.42 ng/mL |
影像学检查 | |
腹部B超 | 胆囊底部中等回声灶,胆泥可能;肝胰 体脾肾肾上腺区未见明显异常 |
垂体MRI增强 | 垂体形态略偏小,高度2.9 mm左右, 蝶窦炎 |
骨龄 | 8岁 |
表2
LAMSHF病例基因和临床特征的文献汇总
文献 | 病例数 | SOX5突变 | 遗传方式 | 身高SD分数 | 智力障碍 | 骨骼畸形 | 其他表型 |
---|---|---|---|---|---|---|---|
Schanze I, et al[ | 3 | 基因内缺失 12p12.1缺失 120 Kb~4.9 Mb | 新发 | -1.8~0 | 轻中度 | 胸廓畸形, 短指趾, 扁平足 | 特殊面容, 行为障碍 |
Lamb AN, et al[ | 16 | 基因内缺失 12p12.1缺失 相互易位 | 新发、 父系遗传 | <-2~1.3 | 轻中重 | 短指趾, 趾弯曲, 扁平足, 高弓足 | 特殊面容, 行为障碍, 眼征, 癫痫 |
Fukushi D, et al[ | 1 | 相互易位 | 新发 | -3.0 | 轻度 | 指趾前倾 | 行为障碍 |
Lee RW, et al[ | 2 | 基因内缺失 12p12.1缺失 53 Kb~3.2 Mb | 新发 | -1.6~0.9 | 中重度 | 多趾 | 特殊面容 |
Quintela I, et al[ | 1 | 基因内缺失 493.94 Kb | 新发 | 正常 | 中度 | 无 | 特殊面容, 行为障碍, 眼征 |
Zawerton A, et al[ | 41 | 基因内缺失 12p12.1缺失 43.7 Kb~1.7 Mb 错义突变 截短突变 | 新发、 母系遗传、 嵌合体 | 正常 | 轻中重 | 小头畸形, 脊椎骨畸形, 胸廓畸形, 并指, 髋关节发育不良 | 特殊面容, 行为障碍, 眼征, 癫痫, 肌张力减退 |
Nesbitt A, et al[ | 1 | 截短突变 | 新发 | 0.65 | 中度 | 脊椎骨畸形, 胸廓畸形, 并趾 | 特殊面容, 行为障碍, 眼征 |
Zech M, et al[ | 2 | 截短突变 | 新发 | 未报道 | 无 | 无 | 行为障碍, 肌张力减退 |
Gkirgkinoudis A, et al[ | 1 | 意义未明变异 | 新发 | -2.1 | 无 | 椎骨畸形, 指趾弯曲 | 无 |
Innella G, et al[ | 6 | 基因内缺失 50~300 Kb 错义突变 | 新发、 嵌合体 | -2.3~正常 | 轻中重度 | 小头畸形, 脊柱畸形 | 特殊面容, 行为障碍, 眼征, 癫痫 |
Cao JH, et al[ | 1 | 截短突变 | 新发 | 未报道 | 轻度 | 指弯曲 | 特殊面容 |
[1] |
Zawerton A, Mignot C, Sigafoos A, et al. Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency[J]. Genet Med, 2020, 22(3):524-537.
doi: 10.1038/s41436-019-0657-0 pmid: 31578471 |
[2] | 中华医学会儿科学分会内分泌遗传代谢学组. 矮身材儿童诊治指南[J]. 中华儿科杂志, 2008, 46(6):428-430. |
Endocrine Genetics and Metabolism Group of Pediatrics Branch of Chinese Medical Association. Guidelines for the diagnosis and treatment of short stature children[J]. Chinese Journal of Pediatrics. 2008; 58(6):443-446. | |
[3] |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-524.
doi: 10.1038/gim.2015.30 pmid: 25741868 |
[4] |
Schanze I, Schanze D, Bacino CA, et al. Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability[J]. Eur J Med Genet, 2013, 56(2):108-113.
doi: 10.1016/j.ejmg.2012.11.001 pmid: 23220431 |
[5] |
Lamb AN, Rosenfeld JA, Neill NJ, et al. Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features[J]. Hum Mutat, 2012, 33(4):728-740.
doi: 10.1002/humu.22037 URL |
[6] |
Fukushi D, Yamada K, Suzuki K, et al. Clinical and genetic characterization of a patient with SOX5 haploinsufficiency caused by a de novo balanced reciprocal translocation[J]. Gene, 2018, 655:65-70.
doi: 10.1016/j.gene.2018.02.049 URL |
[7] |
Lee RW, Bodurtha J, Cohen J, et al. Deletion 12p12 involving SOX5 in two children with developmental delay and dysmorphic features[J]. Pediatr Neurol, 2013, 48(4):317-320.
doi: 10.1016/j.pediatrneurol.2012.12.013 URL |
[8] |
Quintela I, Barros F, Lago-Leston R, et al. A maternally inherited 16p13.11-p12.3 duplication concomitant with a de novo SOX5 deletion in a male patient with global developmental delay, disruptive and obsessive behaviors and minor dysmorphic features[J]. Am J Med Genet A, 2015, 167(6):1315-1322.
doi: 10.1002/ajmg.a.36909 pmid: 25847113 |
[9] |
Nesbitt A, Bhoj EJ, McDonald Gibson K, et al. Exome sequencing expands the mechanism of SOX5-associated intellectual disability: A case presentation with review of sox-related disorders[J]. Am J Med Genet A, 2015, 167A(11):2548-2554.
doi: 10.1002/ajmg.a.37221 pmid: 26111154 |
[10] | Zech M, Poustka K, Boesch S, et al. SOX5-Null Heterozygous Mutation in a Family with Adult-Onset Hyperkinesia and Behavioral Abnormalities[J]. Case Rep Genet, 2017, 2017:2721615. |
[11] | Gkirgkinoudis A, Tatsi C, DeWard SJ, et al. A SOX5gene variant as a possible contributor to short stature[J]. Endocrinol Diabetes Metab Case Rep, 2020, 2020:20-0133. |
[12] |
Innella G, Greco D, Carli D, et al. Clinical spectrum and follow-up in six individuals with Lamb-Shaffer syndrome (SOX5)[J]. Am J Med Genet A, 2021, 185(2):608-613.
doi: 10.1002/ajmg.a.62001 URL |
[13] | 曹井贺, 李建伟, 张玉芹, 等. 一例Lamb-Shaffer综合征患者的 SOX5基因变异分析[J]. 中华医学遗传学杂志, 2021, 38(8):765-767. |
Cao JH, Li JW, Zhang YQ, et al. Variant analysis of SOX5 gene in a Lamb-Shaffer syndrome family[J]. Chinese Journal of Medical Genetics, 2021, 38(8):765-767. | |
[14] |
Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families[J]. Dev Cell, 2002, 3(2):167-170.
pmid: 12194848 |
[15] |
Ikeda T, Zhang J, Chano T, et al. Identification and characterization of the human long form of Sox5 (L-SOX5) gene[J]. Gene, 2002, 298(1):59-68.
doi: 10.1016/S0378-1119(02)00927-7 URL |
[16] |
Kiselak EA, Shen X, Song J, et al. Transcriptional regulation of an axonemal central apparatus gene, sperm-associated antigen 6, by a SRY-related high mobility group transcription factor, S-SOX5[J]. J Biol Chem, 2010, 285(40):30496-30505.
doi: 10.1074/jbc.M110.121590 URL |
[17] |
Wunderle VM, Critcher R, Ashworth A, et al. Cloning and characterization of SOX5, a new member of the human SOX gene family[J]. Genomics, 1996, 36(2):354-358.
pmid: 8812465 |
[18] |
Besenbacher S, Sulem P, Helgason A, et al. Multi-nucleotide de novo Mutations in Humans[J]. PLoS Genet, 2016, 12(11):e1006315.
doi: 10.1371/journal.pgen.1006315 URL |
[19] |
Lu HY, Cui YX, Shi YC, et al. A girl with distinctive features of borderline high blood pressure, short stature, characteristic brachydactyly, and 11.47 Mb deletion in 12p11.21-12p12.2 by oligonucleotide array CGH[J]. Am J Med Genet A, 2009, 149A(10):2321-2323.
doi: 10.1002/ajmg.a.33030 URL |
[20] |
Klopocki E, Hennig BP, Dathe K, et al. Deletion and point mutations of PTHLH cause brachydactyly type E[J]. Am J Hum Genet, 2010, 86(3):434-439.
doi: 10.1016/j.ajhg.2010.01.023 pmid: 20170896 |
[21] |
Martinez-Morales PL, Quiroga AC, Barbas JA, et al. SOX5 5 controls cell cycle progression in neural progenitors by interfering with the WNT-beta-catenin pathway[J]. EMBO Rep, 2010, 11(6):466-472.
doi: 10.1038/embor.2010.61 pmid: 20448664 |
[22] |
Shiseki M, Masuda A, Yoshinaga K, et al. Identification of the SOX5 gene as a novel IGH-involved translocation partner in BCL2-negative follicular lymphoma with t(12;14)(p12.2;q32)[J]. Int J Hematol, 2015, 102(5):633-638.
doi: 10.1007/s12185-015-1823-z URL |
[23] | Seifert MB, Olesen MS, Christophersen IE, et al. Genetic variants on chromosomes 7p31 and 12p12 are associated with abnormal atrial electrical activation in patients with early-onset lone atrial fibrillation[J]. Ann Noninvasive Electrocardiol, 2019, 24(6):e12661. |
[24] | Zhang L, Xu X, Chen Y, et al. Mapping of developmental dysplasia of the hip to two novel regions at 8q23-q24 and 12p12[J]. Exp Ther Med, 2020, 19(4):2799-2803. |
[25] |
Perdomo S, Anantharaman D, Foll M, et al. Genomic analysis of head and neck cancer cases from two high incidence regions[J]. PLoS One, 2018, 13(1):e0191701.
doi: 10.1371/journal.pone.0191701 URL |
[26] |
Grant TJ, Mehta AK, Gupta A, et al. STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines[J]. Oncotarget, 2017, 8(45):78556-78572.
doi: 10.18632/oncotarget.20833 URL |
[27] |
Huang H, Shen H, Wang Y, et al. LOH12CR1 is a novel tumor suppressor inhibiting tumor growth through dere-gulation of G1/S checkpoint in human colorectal carcinoma[J]. Curr Mol Med, 2018, 18(1):25-35.
doi: 10.2174/1566524018666180608084005 pmid: 29879888 |
[28] |
Yeh CN, Chen MH, Chang YC, et al. Over-expression of TNNI3K is associated with early-stage carcinogenesis of cholangiocarcinoma[J]. Mol Carcinog, 2019, 58(2):270-278.
doi: 10.1002/mc.22925 URL |
[1] | 沈琳辉, 王书鸿, 缪婕. 脂联素基因修饰内皮祖细胞移植对缺血性脑卒中小鼠神经保护作用的研究[J]. 诊断学理论与实践, 2022, 21(06): 691-696. |
[2] | 王永亮, 常静涵, 赵秋艳, 帕丽哈·巴依道列提, 朱雪莲, 张煜. 早期阿尔茨海默病患者认知功能损害与睡眠结构相关性的研究[J]. 诊断学理论与实践, 2022, 21(06): 697-701. |
[3] | 王瑾, 郭睿, 李彪, 张晓哲. 18F-FDG PET/CT显像动态评估自然杀伤/T细胞淋巴瘤(鼻型)治疗预后[J]. 诊断学理论与实践, 2022, 21(06): 702-709. |
[4] | 何燕燕, 李凤珠. 膀胱原发性上皮样血管肉瘤一例报道及文献复习[J]. 诊断学理论与实践, 2022, 21(06): 719-725. |
[5] | 杨文康, 张俊, 王淑秋, 祥巴央宗, 杨翠萍. 我国云南香格里拉地区104例肝硬化患者的病因及临床特征分析[J]. 诊断学理论与实践, 2022, 21(06): 730-734. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 王文涵, 夏蜀珺, 詹维伟. 长链非编码RNA ENST00000489676在超声评估甲状腺乳头状癌颈部淋巴结转移中的应用[J]. 诊断学理论与实践, 2022, 21(04): 514-519. |
[8] | 顾炫, 柳俊. 超声筛查鉴别胰腺实性假乳头状瘤与胰腺导管腺癌的研究分析[J]. 诊断学理论与实践, 2022, 21(04): 504-508. |
[9] | 马雪菲, 王学锋, 王侃侃. 浆细胞瘤变异体易位1和MYC基因在泛癌中的表达及生存期预测价值分析[J]. 诊断学理论与实践, 2022, 21(04): 490-496. |
[10] | 屈骞, 海汪溪, 胡生焰, 张敏, 陈肖玥, 周熠磊, 王瑾, 胡晓平, 李彪, 胡佳佳. 多巴胺转运蛋白显像探针18F-FP-CIT的AllinOne模块自动化制备及大鼠基底节Micro PET/CT显像[J]. 诊断学理论与实践, 2022, 21(04): 482-489. |
[11] | 车稳, 柳蒋书, 陈晓炎, 王朝夫, 袁菲, 王璇. 肺混合性鳞状细胞和腺性乳头状瘤2例临床病理特征及冷冻切片病理诊断误诊分析[J]. 诊断学理论与实践, 2022, 21(04): 476-481. |
[12] | 徐程, 徐欣欣, 田烨, 范嘉盈, 宋珍, 杨玲. 下呼吸道流感嗜血杆菌定植通过Toll样受体4影响哮喘小鼠免疫失衡[J]. 诊断学理论与实践, 2022, 21(04): 470-475. |
[13] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[14] | 杨慧, 李云璐, 杨康, 李世举, 何瑾. 进行性肌阵挛共济失调近亲家系全外显子测序漏诊原因分析与对策[J]. 诊断学理论与实践, 2022, 21(04): 456-461. |
[15] | 胡静静, 吕海伟, 荀静娜, 沈银忠, 刘莉, 卢洪洲. 2012年至2021年上海市艾滋病合并分枝杆菌感染患者的菌种分布特征[J]. 诊断学理论与实践, 2022, 21(04): 450-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||