Journal of Diagnostics Concepts & Practice ›› 2017, Vol. 16 ›› Issue (02): 141-146.doi: 10.16150/j.1671-2870.2017.02.004
• Experts forum • Previous Articles Next Articles
Received:
2017-03-31
Online:
2017-04-25
Published:
2017-04-25
CLC Number:
[1] Neumaier F, Paterno M, Alpdogan S, et al.Surgical approaches in psychiatry: A survey of the world literature on psychosurgery[J]. World Neurosurg,2017,97:603-634. [2] Krack P, Martinez-Fernandez R, Del Alamo M, et al.Current applications and limitations of surgical treatments for movement disorders[J]. Mov Disord,2017,32(1):36-52. [3] Vitek JL, Lyons KE, Bakay R, et al.Standard guidelines for publication of deep brain stimulation studies in Parkinson's disease(Guide4DBS-PD)[J]. Mov Disord,2010,25(11):1530-1537. [4] Henderson JM, Tkach J, Phillips M, et al.Permanent neurological deficit related to magnetic resonance ima-ging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report[J]. Neurosurgery, 2005,57(5):E1063. [5] Burchiel KJ, Nguyen TT, Coombs BD, et al.MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames[J]. Stereotact Funct Neu-rosurg,1996,66(1-3):123-136. [6] Spiegel J, Fuss G, Backens M, et al.Transient dystonia following magnetic resonance imaging in a patient with deep brain stimulation electrodes for the treatment of Parkinson disease. Case report[J]. J Neurosurg,2003,99(4):772-774. [7] Littlechild P, Varma TR, Eldridge PR, et al.Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates[J]. Stereotact Funct Neurosurg, 2003,80(1-4):82-87. [8] Pinsker MO, Herzog J, Falk D, et al.Accuracy and distortion of deep brain stimulation electrodes on postope-rative MRI and CT[J]. Zentralbl Neurochir,2008,69(3):144-147. [9] Israel Z, Bergman H.Location, location, location: Validating the position of deep brain stimulation electrodes[J]. Mov Disord,2016,31(3):259. [10] Ashkan K, Blomstedt P, Zrinzo L, et al.Variability of the subthalamic nucleus: the case for direct MRI guided targeting[J]. Br J Neurosurg, 2007,21(2):197-200. [11] Tsai ST, Lin SH, Lin SZ, et al.Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson's disease[J]. Neurosurgery,2007,61(5):E1024-E1029. [12] Mallet L, Schüpbach M, N'Diaye K, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior[J]. Proc Natl Acad Sci U S A,2007,104(25):10661-10666. [13] Guehl D, Edwards R, Cuny E, et al.Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease[J]. J Neurosurg,2007, 106(1):101-110. [14] Brunenberg EJ, Platel B, Hofman PA, et al.Magnetic resonance imaging techniques for visualization of the subthalamic nucleus[J]. J Neurosurg,2011,115(5):971-984. [15] Heo YJ, Kim SJ, Kim HS, et al.Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease[J]. Neuroradiology,2015,57(9):929-935. [16] Longhi M, Ricciardi G, Tommasi G, et al.The role of 3T magnetic resonance imaging for targeting the human subthalamic nucleus in deep brain stimulation for parkinson disease[J]. J Neurol Surg A Cent Eur Neurosurg,2015 ,76(3):181-189. [17] Nagahama H, Suzuki K, Shonai T, et al.Comparison of magnetic resonance imaging sequences for depicting the subthalamic nucleus for deep brain stimulation[J]. Radiol Phys Technol,2015,8(1):30-35. [18] Bot M, Bour L, de Bie RM, et al. Can We rely on susceptibility-weighted imaging for subthalamic nucleus identification in deep brain stimulation surgery?[J]. Neurosurgery,2016,78(3):353-360. [19] Lee JY, Kim JW, Lee JY, et al.Is MRI a reliable tool to locate the electrode after deep brain stimulation surgery? Comparison study of CT and MRI for the localization of electrodes after DBS[J]. Acta Neurochir (Wien),2010,52(12):2029-2036. [20] Holtzheimer PE 3rd, Roberts DW, Darcey TM. Magnetic resonance imaging [21] Hariz MI, Bergenheim AT.A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis[J]. J Neurosurg,1990,73(4):565-571. [22] Tisch S, Zrinzo L, Limousin P, et al.Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia[J]. J Neurol Neurosurg Psychiatry,2007,78(12):1314-1319. [23] Drayer BP.Basal ganglia: significance of signal hypointensity on T2-weighted MR images[J]. Radiology, 1989,173(2):311-312. [24] Dormont D, Ricciardi KG, Tandé D, et al.Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data[J]. Am J Neuroradiol,2004 ,25(9):1516-1523. [25] Starr PA, Vitek JL, DeLong M, et al. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus[J]. Neurosurgery,1999,44(2):303-313. [26] Guo T, Finnis KW, Deoni SCL, et al.Comparison of different targeting methods for subthalamic nucleus deep brain stimulation[A]. See: Medical Image Computing and Computer-Assisted Intervention - Miccai 2006, Pt 1[M]. Springer-Verlag,2006,9(Pt 1):768-775. [27] Gringel T, Schulz-Schaeffer W, Elolf E, et al.Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time[J]. J Magn Reson Imaging,2009,29(6):1285-1292. [28] Duyn JH, van Gelderen P, Li TQ, et al. High-field MRI of brain cortical substructure based on signal phase[J]. Proc Natl Acad Sci U S A,2007,104(28):11796-11801. [29] Haacke EM, Xu Y, Cheng YC, et al.Susceptibility weighted imaging (SWI)[J]. Magn Reson Med,2004,52(3):612-618. [30] Nölte IS, Gerigk L, Al-Zghloul M, et al.Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla[J]. Acta Neurochir (Wien),2012 ,154(3):481-494. [31] Nowacki A, Fiechter M, Fichtner J, et al.Using MDEFT MRI sequences to target the GPi in DBS surgery[J]. PLoS One,2015,10(9):e0137868. [32] Spiegelmann R, Nissim O, Daniels D, et al.Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI[J]. Stereotact Funct Neurosurg,2006,84(1):19-23. [33] Hirabayashi H, Tengvar M, Hariz MI.Stereotactic ima-ging of the pallidal target[J]. Mov Disord,2002,17(Suppl 3):S130-S134. [34] Sandvik U, Koskinen LO, Lundquist A, et al. Thalamic and subthalamic deep brain stimulation for essential tremor: where is the optimal target?[J]. Neurosurgery, 2012 Apr;70(4):840-845. [35] Vassal F, Coste J, Derost P, et al.Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence[J]. Brain Stimul,2012, 5(4): 625-633. [36] Yang C, Wang Q, Wu W, et al.Thalamic segmentation based on improved fuzzy connectedness in structural MRI[J]. Comput Biol Med,2015,66:222-234. [37] Greenberg BD, Gabriels LA, Malone DA Jr, et al.Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience[J]. Mol Psychiatry,2010,15(1):64-79. [38] Medtronic. Mri guidelines for medtronic deep brain stimu-lation systems[R]. 2015. [39] Serano P, Angelone LM, Katnani H, et al.A novel brain stimulation technology provides compatibility with MRI[J]. Sci Rep,2015,5:9805. [40] McElcheran CE, Yang B, Anderson KJ, et al. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging[J]. PLoS One,2015,10(8):e0134379. [41] Kahan J, Papadaki A, White M, et al.The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices[J]. PLoS One,2015,10(6):e0129077. [42] Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage,2012 Sep;62(3):1593-1599. [43] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med,2010,63(1):194-206. [44] Shmueli K, de Zwart JA, van Gelderen P, et al. Magnetic susceptibility mapping of brain tissue [45] Schäfer A, Forstmann BU, Neumann J, et al.Direct visua-lization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping[J]. Hum Brain Mapp,2012,33(12):2831-2842. [46] Liu T, Eskreis-Winkler S, Schweitzer AD, et al.Improved subthalamic nucleus depiction with quantitative susceptibility mapping[J]. Radiology,2013,269(1):216-223. [47] Duchin Y, Abosch A, Yacoub E, et al.Feasibility of using ultra-high field (7 T) MRI for clinical surgical targe-ting[J]. PLoS One,2012,7(5):e37328. [48] Kerl HU, Gerigk L, Pechlivanis I, et al.The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation[J]. Acta Neurochir (Wien),2012,154(11):2051-2062. [49] Dunn JF, Tuor UI, Kmech J, et al.Functional brain mapping at 9.4T using a new MRI-compatible electrode chronically implanted in rats[J]. Magn Reson Med,2009, 61(1):222-228. [50] Al-Helli O, Thomas DL, Massey L, et al.Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation[J]. Acta Neurochir (Wien),2015,157(12):2143-2147. [51] Walter U, Kanowski M, Kaufmann J, et al.Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study[J]. Neuroimage,2008, 40(2):551-558. [52] Walter U, Wolters A, Wittstock M, et al.Deep brain stimulation in dystonia: sonographic monitoring of electrode placement into the globus pallidus internus[J]. Mov Disord,2009,24(10):1538-1541. [53] Walter U, Müller JU, Rösche J, et al.Magnetic resonance-transcranial ultrasound fusion imaging: A novel tool for brain electrode location[J]. Mov Disord,2016,31(3):302-309. [54] Starr PA, Christine CW, Theodosopoulos PV, et al.Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations[J]. J Neurosurg,2002,97(2):370-387. |
[1] | YANG Tian, JI Xiang, NIU Jianmei, KONG Xiaoxiao, LV Mingli. Application of 2D-ultrasonography in prenatal assessment of fetal thymus development [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(05): 471-474. |
[2] | QIAN Le, JIANG Meijiao, YANG Bowen, CHEN Hui. The ultrasonic features and diagnostic performance of ultrasound for ovarian cystadenofibroma and adenofibroma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 161-167. |
[3] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 610-612. |
[4] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 626-629. |
[5] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 630-637. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(06): 711-714. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 487-490. |
[8] | LI Min, LIU Jun, WANG Zhiqian, ZHAN Weiwei. Research on acoustic radiation force impulse imaging in quantitative assessment of testicular stiffness in non-sterility varicocele patients [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 543-547. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 491-495. |
[10] | WANG Zhiqian, LIU Jun, LI Min, ZHAN Weiwei. Ultrasonographic features of proximal deferent duct in congenital absence of vas deferens [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(04): 428-431. |
[11] | FENG Wei, ZHU Haohui. Value of color Doppler ultrasonography in evaluation of stenosis and thrombosis of autogenous arteriovenous fistula [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 360-364. |
[12] | LI Xinyue, TAN Lin, CHAI Weimin. Value of MRI combined with DWI in differential diagnosis of benign papillary lesions with malignant papillary lesions of breast [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 301-306. |
[13] | LI Qinqin, YE Tingjun, MAO Minjing. A contrast analysis of thyroid ultrasound-guided fine needle aspiration cytology and thyroid ultrasound imaging reporting and data system [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(06): 607-611. |
[14] | LI Xudong, LIN Xiaozhu, FANG Weihuan, XIE Huanhuan, CHEN Nan, CHAI Weimin, YAN Fuhua, CHEN Kemin. Application of texture analysis of MR imagings in grading of pancreatic neuroendocrine neoplasms [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(06): 601-606. |
[15] | LI Junwei, XIA Hanbing, ZHAO Hongli, LIU Shuxia. Predictive value of epicardial adipose tissue thickness detected by ultrasonography for coronary artery disease [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(03): 324-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||