Journal of Diagnostics Concepts & Practice ›› 2020, Vol. 19 ›› Issue (04): 414-419.doi: 10.16150/j.1671-2870.2020.04.017
• Original articles • Previous Articles Next Articles
YANG Cuiping1, YANG Xiaojin2, YANG Yanpin3, ZHANG Mengyin1, XIE Ling1, YU Xiaojun1, CAI Boer1, CHEN Dengyu4, CHEN Ping1(), WU Yunlin1()
Received:
2019-07-09
Online:
2020-08-25
Published:
2022-07-15
Contact:
CHEN Ping,WU Yunlin
E-mail:chenping714@aliyun.com;wuyunlin1951@163.com
CLC Number:
YANG Cuiping, YANG Xiaojin, YANG Yanpin, ZHANG Mengyin, XIE Ling, YU Xiaojun, CAI Boer, CHEN Dengyu, CHEN Ping, WU Yunlin. Functional study and detection of vimentin produced by miR-200c target gene in human gastric cancer BGC823 cells[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 414-419.
[1] |
Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma[J]. Cancer Lett, 2011, 305(2):228-238.
doi: 10.1016/j.canlet.2010.07.014 URL |
[2] |
Yang L, Zheng R, Wang N, et al. Incidence and mortality of stomach cancer in China[J]. Chin J Cancer Res, 2018, 30(3):291-298.
doi: 10.21147/j.issn.1000-9604.2018.03.01 URL |
[3] | Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors[J]. Cancer Res, 2012, 72(5):1126-1136. |
[4] |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376 |
[5] |
Mani SA, Guo WJ, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
doi: 10.1016/j.cell.2008.03.027 URL |
[6] |
Ishibashi M, Kogo R, Shibata K, et al. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma[J]. Oncol Rep, 2013, 29(3):946-950.
doi: 10.3892/or.2012.2219 pmid: 23292722 |
[7] |
Wang J, Chen D, He X, et al. Downregulated lincRNA HOTAIR expression in ovarian cancer stem cells decreases its tumorgeniesis and metastasis by inhibiting epithelial-mesenchymal transition[J]. Cancer Cell Int, 2015, 15:24.
doi: 10.1186/s12935-015-0174-4 URL |
[8] |
Christoffersen NR, Silahtaroglu A, Orom UA, et al. miR-200b mediates post-transcriptional repression of ZFHX1B[J]. RNA, 2007, 13(8):1172-1178.
pmid: 17585049 |
[9] |
Hurteau GJ, Carlson JA, Spivack SD, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin[J]. Cancer Res, 2007, 67(17):7972-7976.
doi: 10.1158/0008-5472.CAN-07-1058 URL |
[10] |
Park SM, Gaur AB, Lengyel E, et al. The miR200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev, 2008, 22(7):894-907.
doi: 10.1101/gad.1640608 URL |
[11] |
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008, 10(5):593-601.
doi: 10.1038/ncb1722 pmid: 18376396 |
[12] |
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem, 2008, 283(22):14910-14914.
doi: 10.1074/jbc.C800074200 pmid: 18411277 |
[13] |
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer?[J] EMBO Rep, 2010, 11(9):670-677.
doi: 10.1038/embor.2010.117 pmid: 20706219 |
[14] |
Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6):582-589.
doi: 10.1038/embor.2008.74 URL |
[15] |
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1- SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition[J]. Cancer Res, 2008, 68(19):7846-7854.
doi: 10.1158/0008-5472.CAN-08-1942 URL |
[16] |
Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes Dev, 2009, 23(18):2152-2165.
doi: 10.1101/gad.1820109 URL |
[17] |
Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization[J]. Nat Med, 2011, 17(9):1101-1108.
doi: 10.1038/nm.2401 pmid: 21822286 |
[18] | Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4 Suppl):21. |
[19] |
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer[J]. Int J Cancer, 2013, 132(4):745-754.
doi: 10.1002/ijc.27708 URL |
[20] |
Liu S, Tetzlaff MT, Cui R, et al. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1[J]. Am J Pathol, 2012, 181(5):1823-1835.
doi: 10.1016/j.ajpath.2012.07.009 URL |
[21] |
Okugawa Y, Toiyama Y, Hur K, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis[J]. Carcinogenesis, 2014, 35(12):2731-2739.
doi: 10.1093/carcin/bgu200 URL |
[22] |
Kurashige J, Mima K, Sawada G, et al. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer[J]. Carcinogenesis, 2015, 36(1):133-141.
doi: 10.1093/carcin/bgu232 pmid: 25411357 |
[23] |
Sundararajan V, Gengenbacher N, Stemmler MP, et al. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5[J]. Oncotarget, 2015, 6(29):27083-27096.
doi: 10.18632/oncotarget.4807 pmid: 26334100 |
[24] | Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4_suppl):21. |
[25] |
Hur H, Kim JY, Kim YB, et al. Effect of Helicobacter pylori on prognosis of curatively resected gastric cancers in a population with high prevalence: short-term results of a prospective study[J]. J Clin Oncol, 2011, 29(4 Suppl):152b.
doi: 10.1200/jco.2011.29.4_suppl.152b URL |
[26] | Corso G, Marrelli D, Pascale V, et al. Oncogenic mutations in MAPK cascade as novel molecular biomarkers for treatment of gastric cancer patients with EGFR inhibitors[J]. J Clin Oncol, 2011, 29(4_suppl):39. |
[27] |
Noormohammad M, Sadeghi S, Tabatabaeian H, et al. Upregulation of miR-222 in both Helicobacter pylori-infected and noninfected gastric cancer patients[J]. J Genet, 2016, 95(4):991-995.
pmid: 27994199 |
[28] | Shamsdin SA, Alborzi A, Rasouli M, et al. The importance of TH22 and TC22 cells in the pathogenesis of Helicobacter pylori-associated gastric diseases[J/OL]. [2016-12-19]. https://pubmed.ncbi.nlm.nih.gov/27990709/. |
[1] | YANG Ruixin, DU Yutong, YAN Ranlin, ZHU Zhenggang, LI Chen, YU Yingyan. Improving exploration of biological sample pretreatment in single-cell transcriptome sequencing of gastrointestinal tumors [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 567-574. |
[2] | LI Nana, QI Tao, ZHU Liming. Clinical value of serum pepsinogen,gastrin 17 and Helicobacter pylori IgG antibody in primary screening of gastric diseases [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 509-513. |
[3] | JIANG Jiang, ZENG Zhikun, SHI Bowen, PAN Zhaocheng, YAN Ling, WANG Yujie, ZHANG Huan. Study on motion characteristics of gastric cancer cells using glassy dynamics analysis [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(06): 645-648. |
[4] | ZHOU Lei, WANG Hong, XU Huiming, YE Tao, GAO Jianping, SUN Yijun, XIE Jun. The potential value of serum pepsinogen in screening of chronic atrophic gastritis among population with high risk for gastric cancer of Shanghai central urban area [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 570-574. |
[5] | WANG Lan, ZHANG Huan, GE Yingqian, LU Jing, CUI Zheng, YAN Ling, PAN Zilai. Clinical application and evaluation of artificial intelligence-assisted semi-automatic segmentation software for detection of liver metastases from gastric cancer: intra-observer and inter-observer differences [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 515-520. |
[6] | ZHANG Hua, LI Yongxing, LE Yan, WANG Wenyu, XIANG Mingjie. Use of combined detection of serum OPN and TPS in diagnosis of gastric cancer [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 428-432. |
[7] | WU Xinyang, ZHANG Huan, PAN Zilai, TAN Jingwen, GAO Xiaoyuan. The diagnostic value of dual-source CT in differentiating primary gastric lymphoma from advanced gastric cancer [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 60-65. |
[8] | QIAO Changting, LI Lei, WU Anni, YUAN Fei. Relationship between HER2 expression and clinicopathological features in advanced gastric cancer [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(02): 166-170. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(02): 174-179. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 522-527. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(06): 597-601. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(04): 383-387. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(03): 284-289. |
[14] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(01): 57-61. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(01): 65-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||