内科理论与实践 ›› 2023, Vol. 18 ›› Issue (04): 305-308.doi: 10.16138/j.1673-6087.2023.04.020
• 综述 • 上一篇
收稿日期:
2022-06-05
出版日期:
2023-08-30
发布日期:
2024-01-09
通讯作者:
姚玮艳 E-mail: Received:
2022-06-05
Online:
2023-08-30
Published:
2024-01-09
中图分类号:
郭晓倩, 姚玮艳. 透明质酸及其相关因子在胰腺癌方面的研究进展[J]. 内科理论与实践, 2023, 18(04): 305-308.
GUO Xiaoqian, YAO Weiyan. Research progress of hyaluronic acid and its related factors in pancreatic cancer[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(04): 305-308.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
doi: 10.3322/caac.v70.1 URL |
[2] |
Mundry CS, Eberle KC, Singh PK, et al. Local and systemic immunosuppression in pancreatic cancer: targeting the stalwarts in tumor’s arsenal[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188387.
doi: 10.1016/j.bbcan.2020.188387 URL |
[3] |
Polani F, Grierson PM, Lim KH. Stroma-targeting strategies in pancreatic cancer: past lessons, challenges and prospects[J]. World J Gastroenterol, 2021, 27(18): 2105-2121.
doi: 10.3748/wjg.v27.i18.2105 URL |
[4] |
van Mackelenbergh MG, Stroes CI, Spijker R, et al. Cli-nical trials targeting the stroma in pancreatic cancer: a systematic review and meta-analysis[J]. Cancers (Basel), 2019, 11(5): 588.
doi: 10.3390/cancers11050588 URL |
[5] | 解添淞, 马晓茜, 童彤, 等. 应用CT纹理分析评价胰腺癌透明质酸含量[J]. 中国癌症杂志, 2020, 30(3): 224-230. |
[6] |
Tahkola K, Ahtiainen M, Mecklin JP, et al. Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer[J]. Sci Rep, 2021, 11(1): 12216.
doi: 10.1038/s41598-021-91796-x pmid: 34108626 |
[7] |
Caon I, Bartolini B, Parnigoni A, et al. Revisiting the hallmarks of cancer[J]. Semin Cancer Biol, 2020, 62: 9-19.
doi: 10.1016/j.semcancer.2019.07.007 URL |
[8] | Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology[J]. Int J Cell Biol, 2015, 2015: 563818. |
[9] | Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context[J]. Matrix Biol, 2019, 78-79: 1-10. |
[10] |
Tavianatou AG, Caon I, Franchi M, et al. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer[J]. FEBS J, 2019, 286(15): 2883-2908.
doi: 10.1111/febs.14777 pmid: 30724463 |
[11] |
Bourguignon LY. Matrix hyaluronan promotes specific microRNA upregulation leading to drug resistance and tumor progression[J]. Int J Mol Sci, 2016, 17(4): 517.
doi: 10.3390/ijms17040517 pmid: 27070574 |
[12] |
Franklin O, Billing O, Öhlund D, et al. Novel prognostic markers within the CD44-stromal ligand network in pancreatic cancer[J]. J Pathol Clin Res, 2019, 5(2): 130-141.
doi: 10.1002/cjp2.2019.5.issue-2 URL |
[13] | 郝一, 张煦, 李红超, 等. 血浆甲基化透明质酸酶-2检测对胰腺癌的诊断效能[J]. 山东医药, 2018, 58(31): 9-12. |
[14] |
Choi S, Wang D, Chen X, et al. Function and clinical re-levance of RHAMM isoforms in pancreatic tumor progression[J]. Mol Cancer, 2019, 18(1): 92.
doi: 10.1186/s12943-019-1018-y |
[15] |
Li C, Wang J, Lu X, et al. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis[J]. Biomaterials, 2020, 255: 120071.
doi: 10.1016/j.biomaterials.2020.120071 URL |
[16] |
Qi B, Crawford AJ, Wojtynek NE, et al. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging[J]. Theranostics, 2020, 10(8): 3413-3429.
doi: 10.7150/thno.40688 pmid: 32206099 |
[17] | Hakim N, Patel R, Devoe C, et al. Why HALO 301 failed and implications for treatment of pancreatic cancer[J]. Pancreas (Fairfax), 2019, 3(1): e1-e4. |
[18] |
Kim PK, Halbrook CJ, Kerk SA, et al. Hyaluronic acid fuels pancreatic cancer cell growth[J]. Elife, 2021, 10: e62645.
doi: 10.7554/eLife.62645 URL |
[19] |
Tansi FL, Fröbel F, Maduabuchi WO, et al. Effect of matrix-modulating enzymes on the cellular uptake of magnetic nanoparticles and on magnetic hyperthermia treatment of pancreatic cancer models in vivo[J]. Nanomaterials (Basel), 2021, 11(2): 438.
doi: 10.3390/nano11020438 URL |
[20] |
Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma[J]. Cancer cell, 2012, 21(3): 418-429.
doi: 10.1016/j.ccr.2012.01.007 pmid: 22439937 |
[21] |
Infante JR, Korn RL, Rosen LS, et al. Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours[J]. Br J Cancer, 2018, 118(2): 153-161.
doi: 10.1038/bjc.2017.327 URL |
[22] |
Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase Ⅱ study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018, 36(4): 359-366.
doi: 10.1200/JCO.2017.74.9564 pmid: 29232172 |
[23] |
Ramanathan RK, McDonough SL, Philip PA, et al. Phase ⅠB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069.
doi: 10.1200/JCO.18.01295 pmid: 30817250 |
[24] |
Van Cutsem E, Tempero MA, Sigal D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194.
doi: 10.1200/JCO.20.00590 pmid: 32706635 |
[25] |
Seki T, Saida Y, Kishimoto S, et al. PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts[J]. Neoplasia, 2022, 30 : 100793.
doi: 10.1016/j.neo.2022.100793 URL |
[26] |
Farag MM, Abd El Malak NS, Yehia SA, et al. Hyaluronic acid conjugated metformin-phospholipid sonocomplex[J]. Int J Nanomedicine, 2021, 16: 1005-1019.
doi: 10.2147/IJN.S297634 URL |
[27] |
Kale NR, Dutta D, Carstens W, et al. Functional applications of polyarginine-hyaluronic acid-based electrostatic complexes[J]. Bioelectricity, 2020, 2(2): 158-166.
doi: 10.1089/bioe.2020.0011 pmid: 32856018 |
[28] |
Hu Y, Chen X, Xu Y, et al. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy[J]. Nanoscale, 2019, 11(35): 16476-16487.
doi: 10.1039/c9nr03684a pmid: 31453622 |
[29] |
Serri C, Quagliariello V, Iaffaioli RV, et al. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine[J]. J Cell Physiol, 2019, 234(4): 4959-4969.
doi: 10.1002/jcp.v234.4 URL |
[30] |
Tang M, Svirskis D, Leung E, et al. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer?[J]. J Control Release, 2019, 305: 89-100.
doi: 10.1016/j.jconrel.2019.05.018 URL |
[31] |
Comert Onder F, Sagbas Suner S, Sahiner N, et al. Delivery of small molecule EF2 kinase inhibitor for breast and pancreatic cancer cells using hyaluronic acid based nanogels[J]. Pharm Res, 2020, 37(3): 63.
doi: 10.1007/s11095-020-2774-5 |
[32] |
Etman SM, Abdallah OY, Mehanna RA, et al. Lactoferrin/hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer[J]. Int J Pharm, 2020, 578: 119097.
doi: 10.1016/j.ijpharm.2020.119097 URL |
[33] |
Parayath NN, Hong BV, Mackenzie GG, et al. Hyaluronic acid nanoparticle-encapsulated microRNA-125b repolarizes tumor-associated macrophages in pancreatic cancer[J]. Nanomedicine (Lond), 2021, 16(25): 2291-2303.
doi: 10.2217/nnm-2021-0080 URL |
[1] | 朱颖, 汤玉茗, 黄佳, 章永平, 姚玮艳. 全反式维A酸可促进肿瘤相关诱导配体对多种胰腺癌细胞的凋亡作用[J]. 内科理论与实践, 2023, 18(03): 171-176. |
[2] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[3] | 何敏, 刘颖斌. 可切除胰腺癌的判断标准与治疗及其争议[J]. 外科理论与实践, 2022, 27(01): 6-10. |
[4] | 吴莉莉, 许耀麟, 楼文晖. 放射治疗在胰腺癌治疗中的应用现状和展望[J]. 外科理论与实践, 2022, 27(01): 25-29. |
[5] | 王冲, 程石. 可切除胰腺癌术前减黄的共识与争议[J]. 外科理论与实践, 2022, 27(01): 30-33. |
[6] | 卫积书, 黄诗朦. 胰腺癌嗜神经侵袭与神经重塑的研究历史和治疗现状[J]. 外科理论与实践, 2022, 27(01): 42-45. |
[7] | 李晓丽, 李为光, 钱爱华, 曹国良. 胰腺癌血清微RNA-486-3p的异常表达及对细胞增殖、凋亡的影响[J]. 内科理论与实践, 2021, 16(02): 121-125. |
[8] | 罗丹阳 综述, 高益鸣 审校. 口腔菌群与胰腺癌的相关性研究进展[J]. 外科理论与实践, 2021, 26(01): 84-86. |
[9] | 丁方谜, 刘振东. 叉头盒蛋白D1激活细胞外信号调节激酶通路促进胰腺癌侵袭转移[J]. 外科理论与实践, 2020, 25(06): 486-492. |
[10] | 钱梨寒, 沈柏用. 局部进展期胰腺癌综合治疗的研究进展[J]. 外科理论与实践, 2020, 25(05): 442-446. |
[11] | 吴璟奕, 李国静, 费健. 以急性胰腺炎为首发表现的胰腺癌(附17例报告)[J]. 外科理论与实践, 2020, 25(04): 326-330. |
[12] | 孙文韬, 邓侠兴. 胰腺癌与乙型肝炎感染的研究进展[J]. 外科理论与实践, 2020, 25(02): 171-173. |
[13] | 庄岩,刘春军,杨明勇. 透明质酸酶治疗透明质酸动脉栓塞兔耳皮肤缺血性病变的疗效观察[J]. 组织工程与重建外科杂志, 2019, 15(6): 403-421. |
[14] | 张群,周成双. 应用3D成像系统分析A型肉毒毒素联合透明质酸注射隆鼻的效果[J]. 组织工程与重建外科杂志, 2019, 15(4): 241-244. |
[15] | 骆惠英,汤宋佳,张菊芳. 小针刀辅助透明质酸填充联合A型肉毒毒素注射治疗重度眉间纹[J]. 组织工程与重建外科杂志, 2019, 15(1): 43-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||