内科理论与实践 ›› 2022, Vol. 17 ›› Issue (05): 413-417.doi: 10.16138/j.1673-6087.2022.05.014
收稿日期:
2021-09-29
出版日期:
2022-09-30
发布日期:
2022-11-04
通讯作者:
田新瑞
E-mail:tianxr@126.com
基金资助:
ZHANG Lulu, WU Qiannan, HUO Rujie, et al
Received:
2021-09-29
Online:
2022-09-30
Published:
2022-11-04
中图分类号:
张璐璐, 武倩男, 霍如婕, 田新瑞. 微RNA-206与肺部疾病的研究进展[J]. 内科理论与实践, 2022, 17(05): 413-417.
ZHANG Lulu, WU Qiannan, HUO Rujie, et al. Research progress of miRNA-206 on lung diseases[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 413-417.
[1] |
van Schooneveld E, Wildiers H, Vergote I, et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management[J]. Breast Cancer Res, 2015, 17: 21.
doi: 10.1186/s13058-015-0526-y pmid: 25849621 |
[2] |
Pan Y, Liu L, Li S, et al. Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms[J]. Sci Rep, 2018, 8(1): 3624.
doi: 10.1038/s41598-018-21812-0 pmid: 29483552 |
[3] |
Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336.
doi: 10.3322/caac.21244 URL |
[4] |
Ma G, Wang Y, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease[J]. Int J Biol Sci, 2015, 11(3): 345-352.
doi: 10.7150/ijbs.10921 pmid: 25678853 |
[5] |
Holgate ST, Wenzel S, Postma DS, et al. Asthma[J]. Nat Rev Dis Primers, 2015, 1(1): 15025.
doi: 10.1038/nrdp.2015.25 URL |
[6] |
Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50.
doi: S0272-5231(18)30125-4 pmid: 30691715 |
[7] |
Park SJ, Lee YC. Interleukin-17 regulation: an attractive therapeutic approach for asthma[J]. Respir Res, 2010, 11(1): 78.
doi: 10.1186/1465-9921-11-78 URL |
[8] | 钱琴芬, 熊建新, 朱琳, 等. 发作期哮喘患儿外周血单个核细胞中miR-206表达变化及意义[J]. 山东医药, 2018, 58(37): 62-64. |
[9] |
Zheng H, Zhang X, Castillo EF, et al. Leptin enhances TH2 and ILC2 responses in allergic airway disease[J]. J Biol Chem, 2016, 291(42): 22043-22052.
pmid: 27566543 |
[10] |
Kılıç A, Santolini M, Nakano T, et al. A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation[J]. JCI Insight, 2018, 3(11): e97503.
doi: 10.1172/jci.insight.97503 URL |
[11] | Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931. |
[12] |
Wang L, Xu J, Liu H, et al. PM2.5 inhibits SOD1 expression by up-regulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice[J]. Int Immunopharmacol, 2019, 76: 105871.
doi: 10.1016/j.intimp.2019.105871 URL |
[13] | Hough KP, Curtiss ML, Blain TJ, et al. Airway remodeling in asthma[J]. Front Med (Lausanne), 2020, 7: 191. |
[14] |
Ojiaku CA, Yoo EJ, Panettieri RA Jr. Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. the missing link?[J]. Am J Respir Cell Mol Biol, 2017, 56(4): 432-442.
doi: 10.1165/rcmb.2016-0307TR URL |
[15] | Kistemaker LEM, Prakash YS. Airway innervation and plasticity in asthma[J]. Physiology (Bethesda), 2019, 34(4): 283-298. |
[16] | Goodwin K, Mao S, Guyomar T, et al. Smooth muscle differentiation shapes domain branches during mouse lung development[J]. Development, 2019, 146(22): dev181172. |
[17] |
Radzikinas K, Aven L, Jiang Z, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle[J]. J Neurosci, 2011, 31(43): 15407-15415.
doi: 10.1523/JNEUROSCI.2745-11.2011 pmid: 22031887 |
[18] |
Clifford RL, Singer CA, John AE. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function[J]. Pulm Pharmacol Ther, 2013, 26(1): 75-85.
doi: 10.1016/j.pupt.2012.07.002 pmid: 22800879 |
[19] |
Rodrigo GJ. Advances in acute asthma[J]. Curr Opin Pulm Med, 2015, 21(1): 22-26.
doi: 10.1097/MCP.0000000000000123 pmid: 25405669 |
[20] |
Kho AT, McGeachie MJ, Moore KG, et al. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma[J]. Respir Res, 2018, 19(1): 128.
doi: 10.1186/s12931-018-0828-6 URL |
[21] |
Lei Y, Guo W, Chen B, et al. Tumor-released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non-small cell lung cancer[J]. Oncol Rep, 2018, 40(6): 3438-3446.
doi: 10.3892/or.2018.6762 pmid: 30542738 |
[22] | Jiang S, Liu X, Li D, et al. Study on attenuating angiogenesis and epithelial-mesenchymal transition(EMT) of non-small cell lung carcinoma(NSCLC) by regulating MAGEC2[J]. Technol Cancer Res Treat, 2018, 17: 15330 33818797587. |
[23] |
Zhang YX, Yan YF, Liu YM, et al. Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth[J]. Cell Death Dis, 2016, 7(12): e2528.
doi: 10.1038/cddis.2016.432 URL |
[24] |
Sun C, Liu Z, Li S, et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation[J]. Oncotarget, 2015, 6(28): 25533-25574.
doi: 10.18632/oncotarget.4575 pmid: 26325180 |
[25] |
Chen QY, Jiao DM, Wu YQ, et al. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway[J]. Oncotarget, 2016, 7(14): 18247-18261.
doi: 10.18632/oncotarget.7570 URL |
[26] |
Zhang Y, Yao K, Shi C, et al. 244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells[J]. Oncotarget, 2015, 6(42): 44274-44288.
doi: 10.18632/oncotarget.6236 pmid: 26517520 |
[27] |
Jiao D, Chen J, Li Y, et al. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT[J]. J Cell Mol Med, 2018, 22(7): 3526-3536.
doi: 10.1111/jcmm.13629 pmid: 29664235 |
[28] |
Yang Y, Wang W, Chang H, et al. Reciprocal regulation of miR-206 and IL-6/STAT3 pathway mediates IL6-induced gefitinib resistance in EGFR-mutant lung cancer cells[J]. J Cell Mol Med, 2019, 23(11): 7331-7341.
doi: 10.1111/jcmm.14592 pmid: 31507089 |
[29] |
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report[J]. Am J Respir Crit Care Med, 2017, 195(5): 557-582.
doi: 10.1164/rccm.201701-0218PP URL |
[30] |
Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2018, 198(2): 175-186.
doi: 10.1164/rccm.201710-2140CI URL |
[31] |
Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD[J]. Thorax, 2013, 68(12): 1140-1149.
doi: 10.1136/thoraxjnl-2012-203129 pmid: 23814167 |
[32] | Carpi S, Polini B, Nieri D, et al. Expression analysis of muscle-specific miRNAs in plasma-derived extracellular vesicles from patients with chronic obstructive pulmonary disease[J]. Diagnostics (Basel), 2020, 10(7): 502. |
[33] |
Chan SMH, Selemidis S, Bozinovski S, et al. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD)[J]. Pharmacol Ther, 2019, 198: 160-188.
doi: 10.1016/j.pharmthera.2019.02.013 URL |
[34] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[35] |
Sun Y, An N, Li J, et al. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease[J]. J Cell Biochem, 2019, 120(4): 6223-6236.
doi: 10.1002/jcb.27910 pmid: 30335896 |
[36] |
Mayeux JD, Pan IZ, Dechand J, et al. Management of pulmonary arterial hypertension[J]. Curr Cardiovasc Risk Rep, 2021, 15(1): 2.
doi: 10.1007/s12170-020-00663-3 pmid: 33224405 |
[37] |
Lv Y, Fu L, Zhang Z, et al. Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats[J]. J Am Heart Assoc, 2019, 8(2): e010456.
doi: 10.1161/JAHA.118.010456 URL |
[38] | 白延平, 李海军, 刘智娜. miR-206在大鼠肺动脉高压模型中的表达和意义[J]. 心脏杂志, 2019, 31(6): 654-659. |
[39] |
Yue J, Guan J, Wang X, et al. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway[J]. Lab Invest, 2013, 93(7): 748-759.
doi: 10.1038/labinvest.2013.63 pmid: 23628900 |
[40] |
Jalali S, Ramanathan GK, Parthasarathy PT, et al. miR-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation[J]. PLoS One, 2012, 7(10): e46808.
doi: 10.1371/journal.pone.0046808 URL |
[41] |
Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia[J]. Respir Med, 2017, 132: 170-177.
doi: 10.1016/j.rmed.2017.10.014 URL |
[42] |
Yen CY, Huang CY, Hou MF, et al. Evaluating the performance of fibronectin 1(FN1), integrin α4β1 (ITGA4), syndecan-2 (SDC2), and glycoprotein CD44 as the potential biomarkers of oral squamous cell carcinoma (OSCC)[J]. Biomarkers, 2013, 18(1): 63-72.
doi: 10.3109/1354750X.2012.737025 URL |
[43] |
Duan J, Zhang X, Zhang S, et al. miR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type Ⅱ alveolar epithelial cells[J]. Exp Ther Med, 2017, 13(6): 3203-3208.
doi: 10.3892/etm.2017.4430 pmid: 28587394 |
[44] |
Zhang X, Xu J, Wang J, et al. Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1[J]. PLoS One, 2013, 8(9): e74750.
doi: 10.1371/journal.pone.0074750 URL |
[45] | Zhou J, Fu Y, Liu K, et al. miR-206 regulates alveolar type Ⅱ epithelial cell Cx43 expression in sepsis-induced acute lung injury[J]. Exp Ther Med, 2019, 18(1): 296-304. |
[1] | 孙娴雯, 李庆云. 新型冠状病毒疫情时期的慢性阻塞性肺疾病管理策略——2022版慢性阻塞性肺疾病全球倡议解读[J]. 诊断学理论与实践, 2022, 21(01): 32-37. |
[2] | 仇丽雯, 许轶明, 张音, 沈宏华, 陈慎. 抗阻联合有氧训练对老年慢性阻塞性肺疾病患者运动能力的疗效[J]. 内科理论与实践, 2022, 17(01): 78-83. |
[3] | 刘礼银, 胡系伟, 杨然. 远程医疗在慢性阻塞性肺疾病患者肺康复中的应用价值[J]. 内科理论与实践, 2022, 17(01): 97-101. |
[4] | 周新, 张旻. 中国支气管哮喘防治指南(2020年版)解读[J]. 诊断学理论与实践, 2021, 20(02): 138-143. |
[5] | 王佳卉, 李宁, 孙娴雯, 林莹妮, 丁永杰, 宋鹤杰, 李庆云. 基于TCGA数据库分析非小细胞肺癌SERPINA1、FHIT甲基化水平及临床意义[J]. 内科理论与实践, 2021, 16(02): 103-107. |
[6] | 王建丽, 张立强. 睡眠呼吸障碍与肺动脉高压[J]. 内科理论与实践, 2021, 16(02): 80-83. |
[7] | 崔小川, 张希龙. 阻塞性睡眠呼吸暂停低通气综合征与支气管哮喘[J]. 内科理论与实践, 2021, 16(02): 93-96. |
[8] | 陈晨, 尹姗姗, 郭佳慧, 高丰厚. 微RNA-29家族降解PTEN mRNA促进非小细胞肺癌细胞存活与淋巴结侵袭[J]. 内科理论与实践, 2021, 16(01): 37-44. |
[9] | 李庆云, 孙娴雯. 慢性阻塞性肺疾病稳定期管理的几个新视点:2021版 GOLD指南解读[J]. 诊断学理论与实践, 2021, 20(01): 43-47. |
[10] | 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(05): 540-543. |
[11] | 李庆云, 孙娴雯. 细化稳定期COPD管理流程和随访策略:2020版GOLD指南解读[J]. 诊断学理论与实践, 2020, 19(04): 354-358. |
[12] | 杜海磊, 陈聆, 罗方秀, 李勇, 程齐俭, 朱良纲, 杭钧彪. Beclin-1和Bcl-2表达与非小细胞肺癌患者病理特征及预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 258-263. |
[13] | 杜井波, 沈宏华, 许轶明, 任蕾,. 慢性阻塞性肺疾病-阻塞性睡眠呼吸暂停重叠综合征特点分析及康复疗效[J]. 内科理论与实践, 2020, 15(01): 31-37. |
[14] | 陈纯娟, 张曹进. 慢性血栓栓塞性肺动脉高压的诊治现状及治理[J]. 诊断学理论与实践, 2019, 18(1): 28-33. |
[15] | 魏晓敏, 张媛媛, 董樑, 夏敬文, 龚益, 喻永平, 李圣青. 真实世界中肺栓塞后慢性血栓栓塞性肺动脉高压的发病及相关危险因素前瞻性研究[J]. 诊断学理论与实践, 2019, 18(1): 37-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||