Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (03): 232-241.doi: 10.16138/j.1673-6087.2025.03.08
• Original article • Previous Articles Next Articles
Received:
2024-06-21
Online:
2025-06-28
Published:
2025-09-01
Contact:
YAO Weiyan
E-mail:ywy11419@rjh.com.cn
CLC Number:
YANG Ziyun, YAO Weiyan. Construction of necroptosis-related lncRNA risk model of pancreatic cancer based on bioinformatics[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(03): 232-241.
Table 1
Hazard ratios of various clinical characteristics in univariate and multivariate analyses
特征 | 例数(n) | 单因素分析 | 多因素分析 | |||
---|---|---|---|---|---|---|
风险比(95% CI) | P | 风险比 (95% CI) | P | |||
年龄 | 178 | 1.028 (1.006 ~ 1.050) | 0.012 | 1.025 (1.003 ~ 1.048) | 0.027 | |
性别 | 178 | 0.897 (0.588 ~ 1.368) | 0.614 | |||
女性 | 80 | 基准值(Ref) | ||||
男性 | 98 | 0.897 (0.588 ~ 1.368) | 0.614 | |||
分级 | 176 | 1.377 (1.020 ~ 1.859) | 0.037 | 1.276 (0.943 ~ 1.048) | 0.114 | |
1 | 31 | 基准值(Ref) | ||||
2 | 95 | 1.795 (0.898 ~ 3.586) | 0.098 | |||
3 | 48 | 2.286 (1.101 ~ 4.748) | 0.027 | |||
4 | 2 | 1.650 (0.210 ~ 12.995) | 0.634 | |||
分期 | 175 | 1.422 (0.979 ~ 2.066) | 0.065 | |||
2 | 147 | 基准值(Ref) | 基准值(Ref) | |||
4 | 4 | 0.886 (0.217 ~ 3.620) | 0.866 | 0.920 (0.225 ~ 3.762) | 0.907 | |
1 | 21 | 0.305 (0.123 ~ 0.761) | 0.011 | 0.348 (0.139 ~ 0.871) | 0.054 | |
3 | 3 | 0.668 (0.093 ~ 4.807) | 0.688 | 0.704 (0.098 ~ 5.078) | 0.728 | |
风险评分 | 178 | 1.014 (1.007 ~ 1.021) | < 0.001 | 1.014 (1.006 ~ 1.022) | < 0.001 |
[1] | Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33.. |
[2] | Huang X, Ding L, Liu X, et al. Regulation of tumor microenvironment for pancreatic cancer therapy[J]. Biomaterials, 2021,270:120680. |
[3] |
Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1):100.
doi: 10.1186/s12943-019-1029-8 pmid: 31122251 |
[4] |
Chen X, Zeh HJ, Kang R, et al. Cell death in pancreatic cancer: from pathogenesis to therapy[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(11):804-823.
doi: 10.1038/s41575-021-00486-6 pmid: 34331036 |
[5] | Ando Y, Ohuchida K, Otsubo Y, et al. Necroptosis in pancreatic cancer promotes cancer cell migration and invasion by release of CXCL5[J]. PLoS One, 2020, 15(1):e0228015. |
[6] |
Zhang Y, Yue Q, Cao F, et al. Necroptosis-related lncRNA signatures determine prognosis in breast cancer patients[J]. Sci Rep, 2022, 12(1):11268.
doi: 10.1038/s41598-022-15209-3 pmid: 35787661 |
[7] | Luo J, Peng J, Xiao W, et al. A novel necroptosis-related lncRNA signature for predicting prognosis and immune response of colon cancer[J]. Front Genet, 2022,13:984696. |
[8] | Du X, Pu X, Wang X, et al. A novel necroptosis-related lncRNA based signature predicts prognosis and response to treatment in cervical cancer[J]. Front Genet, 2022,13:938250. |
[9] | Ghafouri-Fard S, Fathi M, Zhai T, et al. LncRNAs: novel biomarkers for pancreatic cancer[J]. Biomolecules, 2021, 11(11):1665. |
[10] | Zhao Z, Liu H, Zhou X, et al. Necroptosis-related lncRNAs: predicting prognosis and the distinction between the cold and hot tumors in gastric cancer[J]. J Oncol, 2021,2021:6718443. |
[11] | Tang R, Xu J, Zhang B, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity[J]. J Hematol Oncol, 2020, 13(1):110. |
[12] |
Xiong Y, Kong X, Fang K, et al. Establishment of a novel signature to predict prognosis and immune characteristics of pancreatic cancer based on necroptosis-related long non-coding RNA[J]. Mol Biol Rep, 2023, 50(9):7405-7419.
doi: 10.1007/s11033-023-08663-3 pmid: 37452900 |
[13] | Mo J, Cui Z, Wang Q, et al. Integrated analysis of necroptosis-related lncRNAs for prognosis and immunotherapy of patients with pancreatic adenocarcinoma[J]. Front Genet, 2022,13:940794. |
[14] | Kumari A, Sahoo J, De M. 2D-MoS2-supported copper peroxide nanodots with enhanced nanozyme activity: application in antibacterial activity[J]. Nanoscale, 2023, 15(48):19801-19814. |
[15] | Shi Z, Li G, Li Z, et al. TMEM161B-AS1 suppresses proliferation, invasion and glycolysis by targeting miR-23a-3p/HIF1AN signal axis in oesophageal squamous cell carcinoma[J]. J Cell Mol, 2023, 27(4):591-592. |
[16] | Ho KH, Huang TW, Shih CM, et al. Glycolysis-associated lncRNAs identify a subgroup of cancer patients with poor prognoses and a high-infiltration immune microenvironment[J]. BMC Med, 2021, 19(1):59. |
[17] |
Zhong F, Liu S, Hu D, et al. LncRNA AC099850.3 promotes hepatocellular carcinoma proliferation and invasion through PRR11/PI3K/AKT axis and is associated with patients prognosis[J]. J Cancer, 2022, 13(3):1048-1060.
doi: 10.7150/jca.66092 pmid: 35154469 |
[18] | Ye J, Li H, Wei J, et al. Risk scoring system based on lncRNA expression for predicting survival in hepatocellular carcinoma with cirrhosis[J]. Asian Pac J Cancer Prev, 2020, 21(6):1787-1795. |
[19] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674.
doi: 10.1016/j.cell.2011.02.013 pmid: 21376230 |
[20] |
Acloque H, Adams MS, Fishwick K et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease[J]. J Clin Invest, 2009, 119(6):1438-1449.
doi: 10.1172/JCI38019 pmid: 19487820 |
[21] |
Wei D, Wang L, Kanai M, et al. KLF4α up-regulation promotes cell cycle progression and reduces survival time of patients with pancreatic cancer[J]. Gastroenterology, 2010, 139(6):2135-2145.
doi: 10.1053/j.gastro.2010.08.022 pmid: 20727893 |
[22] |
He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6):1100-1111.
doi: 10.1016/j.cell.2009.05.021 pmid: 19524512 |
[23] | Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I[J]. Nature, 2020, 581(7806):100-105. |
[24] |
Hiraoka N, Onozato K, Kosuge T, et al. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions[J]. Clin Cancer Res, 2006, 12(18):5423-5434.
doi: 10.1158/1078-0432.CCR-06-0369 pmid: 17000676 |
[25] |
Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. J Biomed Sci, 2019, 26(1):78.
doi: 10.1186/s12929-019-0568-z pmid: 31629410 |
[26] | Campillo N, Falcones B, Otero J, et al. Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: novel experimental setting and proof of concept[J]. Front Oncol, 2019,9:43. |
[27] | Wang Z, Zhao J, Zhao H, et al. Infiltrating CD4/CD8 high T cells shows good prognostic impact in pancreatic cancer[J]. Int J Clin Exp Pathol, 2017, 10(8):8820-8828. |
[28] |
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3):197-218.
doi: 10.1038/s41573-018-0007-y pmid: 30610226 |
[29] |
Chen J, Wang S, Jia S, et al. Integrated analysis of long non-coding RNA and mRNA expression profile in pancreatic cancer derived exosomes treated dendritic cells by microarray analysis[J]. J Cancer, 2018, 9(1):21-31.
doi: 10.7150/jca.21749 pmid: 29290766 |
[30] | Lawlor RT, Mattiolo P, Mafficini A, et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions[J]. Cancers (Basel), 2021, 13(13):3119. |
[31] | Cullis J, Das S, Bar-Sagi D. Kras and tumor immunity: friend or foe?[J]. Cold Spring Harb Perspect Med, 2018, 8(9):a031849. |
[32] | Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response[J]. J Cell Sci, 2020, 133(5):jcs237453. |
[33] | Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer[J]. Biomolecules, 2019, 9(12):789. |
[34] | Bacherikov VA. Total synthesis, mechanism of action, and antitumor efficacy of camptothecin and some of its analogues[J]. Anticancer Agents Med Chem, 2022, 22(20):3438-3465. |
[35] | Bongiovanni A, Liverani C, Recine F, et al. Phase-Ⅱ trials of pazopanib in metastatic neuroendocrine neoplasia (mNEN)[J]. Front Oncol, 2020,10:414. |
[36] | Yuan R, Kay A, Berg WJ, et al. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy[J]. J Hematol Oncol, 2009,2:45. |
[1] | GUO Genyu, ZHANG Chuqiao, XU Yinmei, et al. Unveiling hypoxia-related biomarkers for diabetic foot ulcers through integrated bioinformatics analysis and machine learning [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2025, 21(3): 238-. |
[2] | JIN Jiabin, MA Junjun, YE Feng, MA Shiyu, CHEN Jingxian. Investigation of the mechanism of Huaier (Vanderbylia robiniophila) anti-pancreatic cancer based on network pharmacology, molecular docking, and two-sample Mendelian randomization analysis [J]. Journal of Surgery Concepts & Practice, 2025, 30(03): 247-255. |
[3] | LEICHAO Wenwei, RAO Jialing, ZHOU Mengxue, YANG Hong. Advances in research on risk factors and associated diseases of intrapancreatic fat deposition [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(01): 72-79. |
[4] | ZHANG Ke, ZHANG Weiyi, SUN Haitian, CAO Mingfeng, ZHANG Xinhuan. Anoikis-related gene PDK4 and pathogenesis of type 2 diabetes mellitus: A bioinformatics-based study [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(01): 27-34. |
[5] | XU Jingshu, SHI Jianhua, GU Haiyan, CHEN Lei, QIAN Xiaolin, LU Lu, NIU Deng. Trends analysis of pancreatic cancer mortality in Xuhui district, Shanghai from 1992 to 2021 [J]. Journal of Surgery Concepts & Practice, 2025, 30(01): 34-40. |
[6] | WEI Bingyi, XIE Yan, WU Xiaolong, et al. Study on lncRNA H19 promoting osteogenic differentiation of placenta-derived mesenchymal stem cells [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2024, 20(6): 665-. |
[7] | ZHOU Yue, YE Meina, DAI Qiuying, et al. Identification of differentially expressed proteins of granulomatous mastitis and key cytokine validation [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2024, 20(1): 75-. |
[8] | CHU Yudan, SUN Haidong, CUI Ran, ZHENG Hong. Expression and clinical significance of disulfidptosis-related LncRNA in gastric cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(05): 414-425. |
[9] | SHENG Zhaoqing, LIU Xiaohong. Screening and pathway analysis of autophagy-related genes in Alzheimer disease [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 236-242. |
[10] | WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu. Bioinformatics analysis and identification of cuproptosis characteristic genes for acute pancreatitis by machine learning [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 224-230. |
[11] | OU Dan, CAI Gang, CHEN Jiayi. Bioinformatics analysis for expression of RAD51AP1 in triple negative breast cancer with brain metastasis [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 146-154. |
[12] | HU Binwei, SHEN Baiyong. Advantages and advances in neoadjuvant therapy of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 74-80. |
[13] | REN Jiaqiang, WU Shuai, MO Jiantao, ZHOU Cancan, HAN Liang, WU Zheng. Progress of magnetic iron oxide nanoparticles in targeted diagnosis and treatment of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 61-66. |
[14] | WANG Meiwen, FU Ningzhen, WANG Weishen, REN Xinping. Bedside ultrasound diagnosis and risk factors of early thromboembolism after pancreaticoduodenectomy with vein reconstruction [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 54-60. |
[15] | QI Zhong, XING Ying, CHENG Shi. The future directions of artificial intelligence in the biological benefit-dominated diagnosis and treatment of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 5-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||