Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (05): 420-425.doi: 10.16138/j.1673-6087.2025.05.14
Previous Articles Next Articles
LI Xianmei1(
), LI Min2, YANG Zhenning1, LI Wei2(
)
Received:2024-08-02
Online:2025-12-10
Published:2025-12-26
Contact:
LI Wei
E-mail:1272882129@qq.com;13888956781@163.com
CLC Number:
LI Xianmei, LI Min, YANG Zhenning, LI Wei. Research advances on pyroptosis in pulmonary diseases[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(05): 420-425.
| [1] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541.
doi: 10.1038/s41418-017-0012-4 |
| [2] |
Lu X, Guo T, Zhang X. Pyroptosis in cancer: friend or foe?[J]. Cancers (Basel), 2021, 13(14): 3620.
doi: 10.3390/cancers13143620 |
| [3] |
Ma F, Ghimire L, Ren Q, et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death[J]. Nat Commun, 2024, 15(1): 386.
doi: 10.1038/s41467-023-44669-y |
| [4] |
Yan WT, Yang YD, Hu XM, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies[J]. Neural Regen Res, 2022, 17(8): 1761-1768.
doi: 10.4103/1673-5374.331539 |
| [5] |
Ren C, Chen J, Che Q, et al. IL-37 alleviates TNF-α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by inhibiting the NF-κB/GSDMD signaling pathway[J]. Immunobiology, 2023, 228(3): 152382.
doi: 10.1016/j.imbio.2023.152382 |
| [6] |
Zheng X, Chen W, Gong F, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review[J]. Front Immunol, 2021, 12: 711939.
doi: 10.3389/fimmu.2021.711939 |
| [7] |
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169.
doi: 10.1038/358167a0 |
| [8] | Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114. |
| [9] |
You J, Li X, Dai F, et al. GSDMD-mediated pyroptosis promotes cardiac remodeling in pressure overload[J]. Clin Exp Hypertens, 2023, 45(1): 2189138.
doi: 10.1080/10641963.2023.2189138 |
| [10] |
Arik E, Heinisch O, Bienert M, et al. Erythropoietin enhances post-ischemic migration and phagocytosis and alleviates the activation of inflammasomes in human microglial cells[J]. Front Cell Neurosci, 2022, 16: 915348.
doi: 10.3389/fncel.2022.915348 |
| [11] | 周蕊寒, 刘建成, 张安仁. 炎性小体在诱导脊髓损伤神经炎症中的作用[J]. 中国生物化学与分子生物学报, 2022, 38(4): 424-431. |
| Zhou RH, Liu JC, Zhang AR. Role of inflammasomes in inducing neuroinflammation in spinal cord injury[J]. Chin J Biochem Mol Biol, 2022, 38(4): 424-431. | |
| [12] |
Liang F, Zhang F, Zhang L, et al. The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases[J]. Inflamm Res, 2020, 69(2): 159-166.
doi: 10.1007/s00011-020-01315-3 |
| [13] |
Zou J, Zheng Y, Huang Y, et al. The versatile gasdermin family: their function and roles in diseases[J]. Front Immunol, 2021, 12: 751533.
doi: 10.3389/fimmu.2021.751533 |
| [14] |
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157.
doi: 10.1038/s41577-019-0228-2 |
| [15] |
Matikainen S, Nyman TA, Cypryk W. Function and regulation of noncanonical caspase-4/5/11 inflammasome[J]. J Immunol, 2020, 204(12): 3063-3069.
doi: 10.4049/jimmunol.2000373 |
| [16] |
Kang L, Dai J, Wang Y, et al. Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme pyroptotic pathways rescues silicosis in mice[J]. PLoS Genet, 2022, 18(12): e1010515.
doi: 10.1371/journal.pgen.1010515 |
| [17] |
Wu J, Lin S, Chen W, et al. TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis[J]. Cell Death Discov, 2023, 9(1): 76.
doi: 10.1038/s41420-023-01365-6 |
| [18] | Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes[J]. Eur Respir J, 2021, 59(1): 2102730. |
| [19] | Chen L, Hou W, Liu F, et al. Blockade of NLRP3/Caspase-1/IL-1 β regulated Th17/Treg immune imbalance and attenuated the neutrophilic airway inflammation in an ovalbumin-induced murine model of asthma[J]. J Immunol Res, 2022, 2022: 9444227. |
| [20] |
Ma M, Li G, Qi M, et al. Inhibition of the inflammasome activity of NLRP3 attenuates HDM-induced allergic asthma[J]. Front Immunol, 2021, 12: 718779.
doi: 10.3389/fimmu.2021.718779 |
| [21] |
Zhuang J, Cui H, Zhuang L, et al. Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma[J]. Biomed Pharmacother, 2020, 125: 109925.
doi: 10.1016/j.biopha.2020.109925 |
| [22] |
Jaiswal A, Dash D, Singh R. Intranasal curcumin and dexamethasone combination ameliorates inflammasome (NLRP3) activation in lipopolysachharide exposed asthma exacerbations[J]. Toxicol Appl Pharmacol, 2022, 436: 115861.
doi: 10.1016/j.taap.2021.115861 |
| [23] |
Pretre V, Papadopoulos D, Regard J, et al. Interleukin-1 (IL-1) and the inflammasome in cancer[J]. Cytokine, 2022, 153: 155850.
doi: 10.1016/j.cyto.2022.155850 |
| [24] |
Traughber CA, Deshpande GM, Neupane K, et al. Myeloid-cell-specific role of Gasdermin D in promoting lung cancer progression in mice[J]. iScience, 2023, 26(2): 106076.
doi: 10.1016/j.isci.2023.106076 |
| [25] |
Li X, He J. A novel pyroptosis-related gene signature for early-stage lung squamous cell carcinoma[J]. Int J Gen Med, 2021, 14: 6439-6453.
doi: 10.2147/IJGM.S331975 |
| [26] |
Dai J, Qu T, Yin D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer[J]. Cell Death Dis, 2023, 14(5): 312.
doi: 10.1038/s41419-023-05840-x |
| [27] |
Xie C, Zhou X, Chen W, et al. Diallyl trisulfide induces pyroptosis and impairs lung CSC-like properties by activating the ROS/Caspase 1 signaling pathway[J]. Chem Biol Interact, 2024, 397: 111083.
doi: 10.1016/j.cbi.2024.111083 |
| [28] |
Zhang X, Liu R. Pyroptosis-related genes GSDMB,GSDMC, andAIM2 polymorphisms are associated with risk of non-small cell lung cancer in a Chinese Han population[J]. Front Genet, 2023, 14: 1212465.
doi: 10.3389/fgene.2023.1212465 |
| [29] |
Peng Z, Tan X, Xi Y, et al. Role of pyroptosis-related cytokines in the prediction of lung cancer[J]. Heliyon, 2024, 10(10): e31399.
doi: 10.1016/j.heliyon.2024.e31399 |
| [30] |
Liu X, Huang X, Xu F. The influence of pyroptosis-related genes on the development of chronic obstructive pulmonary disease[J]. BMC Pulm Med, 2023, 23(1): 167.
doi: 10.1186/s12890-023-02408-5 |
| [31] |
Mo R, Zhang J, Chen Y, et al. Nicotine promotes chronic obstructive pulmonary disease via inducing pyroptosis activation in bronchial epithelial cells[J]. Mol Med Rep, 2022, 25(3): 92.
doi: 10.3892/mmr.2022.12608 |
| [32] |
Zhang Y, Wang J, Wang Y, et al. Nrf2/HO-1 signaling activation alleviates cigarette smoke-induced inflammation in chronic obstructive pulmonary disease by suppressing NLRP3-mediated pyroptosis[J]. J Cardiothorac Surg, 2024, 19(1): 58.
doi: 10.1186/s13019-024-02530-3 |
| [33] |
Shyam Prasad Shetty B, Chaya SK, Kumar V S, et al. Inflammatory biomarkers interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α) are differentially elevated in tobacco smoke associated COPD and biomass smoke associated COPD[J]. Toxics, 2021, 9(4): 72.
doi: 10.3390/toxics9040072 |
| [34] |
Li Z, He P, Ding H, et al. Association between peripheral blood WBCs C3aR mRNA level and plasma C3a, C3aR, IL-1β concentrations and acute exacerbation of chronic obstructive pulmonary disease[J]. Immunobiology, 2022, 227(1): 152164.
doi: 10.1016/j.imbio.2021.152164 |
| [35] |
Colarusso C, Terlizzi M, Lamort AS, et al. Caspase-11 and AIM2 inflammasome are involved in smoking-induced COPD and lung adenocarcinoma[J]. Oncotarget, 2021, 12(11): 1057-1071.
doi: 10.18632/oncotarget.27964 |
| [36] | 牛毓茜, 李桂云, 杨丽秋, 等. 细胞焦亡在急性肺损伤小鼠肺巨噬细胞中的调控机制研究[J]. 中国免疫学杂志, 2021, 37(12): 1439-1442. |
| Niu YQ, Li GY, Yang LQ, et al. Research on regulatory mechanism of pyroptosis in pulmonary macrophages of mice with acute lung injury[J]. Chin J Immunol, 2021, 37(12): 1439-1442. | |
| [37] |
Liu Y, Zhou J, Luo Y, et al. Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro andin vivo[J]. Chin Med, 2021, 16(1): 127.
doi: 10.1186/s13020-021-00541-z |
| [38] |
Huang YD, Fang Y, Ma L, et al. Kindlin-2 mediates lipopolysaccharide-induced acute lung injury partially via pyroptosis in mice[J]. Inflammation, 2022, 45(3): 1199-1208.
doi: 10.1007/s10753-021-01613-w |
| [39] |
Zhang Y, Zhang H, Li S, et al. Metformin alleviates LPS-induced acute lung injury by regulating the SIRT1/NF-κB/NLRP3 pathway and inhibiting endothelial cell pyroptosis[J]. Front Pharmacol, 2022, 13: 801337.
doi: 10.3389/fphar.2022.801337 |
| [40] |
Zhang T, Li M, Zhao S, et al. CaMK4 promotes acute lung injury through NLRP3 inflammasome activation in type Ⅱ alveolar epithelial cell[J]. Front Immunol, 2022, 13: 890710.
doi: 10.3389/fimmu.2022.890710 |
| [41] |
Shah AJ, Vorla M, Kalra DK. Molecular pathways in pulmonary arterial hypertension[J]. Int J Mol Sci, 2022, 23(17): 10001.
doi: 10.3390/ijms231710001 |
| [42] |
He S, Ma C, Zhang L, et al. GLI1-mediated pulmonary artery smooth muscle cell pyroptosis contributes to hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(3): L472-L482.
doi: 10.1152/ajplung.00405.2019 |
| [43] |
Wu Y, Pan B, Zhang Z, et al. Caspase-4/11-mediated pulmonary artery endothelial cell pyroptosis contributes to pulmonary arterial hypertension[J]. Hypertension, 2022, 79(3): 536-548.
doi: 10.1161/HYPERTENSIONAHA.121.17868 |
| [44] |
Dai X, Liu Y, Wu Y, et al. DYZY01 alleviates pulmonary hypertension via inhibiting endothelial cell pyroptosis and rescuing endothelial dysfunction[J]. Eur J Pharmacol, 2024, 978: 176785.
doi: 10.1016/j.ejphar.2024.176785 |
| [45] | 刘敏, 王启芝, 刘雨, 等. 复方葶苈子汤改善COPD相关性肺动脉高压大鼠的肺血管重塑的机制研究[J]. 湖南中医药大学学报, 2022, 42(3): 380-386. |
| Liu M, Wang QZ, Liu Y, et al. Mechanism of Compound Tinglizi Decoction in improving pulmonary vascular remodeling in COPD-related pulmonary arterial hypertension rats[J]. Journal of Hunan University of Chinese Medicine, 2022, 42(3): 380-386. |
| [1] | Mi Linhui, Yuan Junyi, Zhou Yankang, Hou Xumin. Text Structured Algorithm of Lung Cancer Cases Based on Deep Learning [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 778-789. |
| [2] | WANG Yi, HUANG Hui. Advances in pathogenesis and treatment of chronic obstructive pulmonary disease complicated with sarcopenia [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(05): 415-419. |
| [3] | ZHOU Yan, ZHANG Min. Interpretation of Chinese Guidelines for the Prevention and Management of Bronchial Asthma (2024 Edition) [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(04): 415-422. |
| [4] | ZHANG Xuekun, CHEN Xiaoyan, XIA Xinyun, CHENG Zenghui. Clinical and CT features of non-small cell lung cancer SMARCA4 expression deficiency [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 282-288. |
| [5] | CHENG Dongfeng, ZHOU Ziyi, XU Rongzhong, FANG Zhihong. Two cases of staged treatment of non-small cell lung cancer with traditional Chinese medicine [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(01): 30-33. |
| [6] | QIANG Shihao, DAI Qingxia, HUANG Lina, GUO Hua, CUI Xiaochuan. Research progress on biomarkers for chronic obstructive pulmonary disease complicated with obstructive sleep apnea [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 322-327. |
| [7] | LIU Jie, ZHANG Yin, XU Yiming, REN Lei, SHEN Honghua. Rehabilitation efficacy of aerobic exercise on patients with overlap syndrome of chronic obstructive pulmonary disease and obstructive sleep apnea [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 295-302. |
| [8] | HE Quanying. Discussion on understanding of the essence of chronic obstructive pulmonary disease from the definitions of chronic obstructive pulmonary disease in GOLD over the years [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 289-294. |
| [9] | SUN Junnan, ZHANG Jiaojiao, WANG Hairong. Study on the role of charged multivesicular body proteins 5 in regulating pyroptosis of vascular endothelial cells [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(03): 159-166. |
| [10] | ZHOU Yan, ZHANG Min. Current status and countermeasures of diagnosis and treatment of mild bronchial asthma in China [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(06): 520-526. |
| [11] | ZHAO Yajie, HE Qing, XU Zhihong. Impact of sarcopenia on quality of life and mobility in elderly patients with chronic obstructive pulmonary disease [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 383-387. |
| [12] | CHANG Qing, CHEN Yuqing, YUAN Yueyang, ZHANG Hai, LI Feng, LI Xingwang. Influence of different respiratory mechanics properties on inspiratory flow index during pressure controlled ventilation [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 454-459. |
| [13] | FAN Zhenjia, ZHAO Juntao, ZHOU Jiakuan, LI Zhanquan, WAN Yinglei. Application value of ST2 combined with CEA and CYFRA211 in diagnosis of early non-small cell lung cancer [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 441-447. |
| [14] | SUN Xianwen, LI Qingyun. Phenotypes of chronic obstructive pulmonary disease with preserved ratio impaired spirometry (PRISm) [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 234-237. |
| [15] | YANG Wenjie, YAN Fuhua. Interpretation of the Clinical Practice Guidelines for Lung Cancer Screening (version 2) of 2022 National Comprehensive Cancer Network(NCCN) [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 14-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||