外科理论与实践 ›› 2023, Vol. 28 ›› Issue (05): 483-487.doi: 10.16139/j.1007-9610.2023.05.15
• 综述 • 上一篇
收稿日期:
2022-11-18
出版日期:
2023-09-25
发布日期:
2024-01-04
通讯作者:
于冠宇,E?mail: yuguanyu0451@163.com;张卫,E?mail: weizhang2000cn@163.com
基金资助:
ZHANG Tianshuai, ZHOU Leqi, YU Guanyu(), ZHANG Wei(
)
Received:
2022-11-18
Online:
2023-09-25
Published:
2024-01-04
摘要:
嵌合抗原受体T细胞(chimeric antigen receptor T cell, CAR-T细胞)免疫治疗是肿瘤治疗的全新方法,在血液肿瘤的治疗中获得显著成效。结肠直肠癌(colorectal cancer, CRC)作为实体肿瘤,具有与血液肿瘤不同的特性,这对CART细胞免疫治疗靶点的选取及治疗效果都存在着一定制约。因此,需根据CRC的特征选择特异性高和有效性强的治疗靶点,同时还需突破治疗产生的不良反应及实体肿瘤微环境等限制因素,使该疗法在CRC治疗中得以应用。本文旨在归纳CAR-T细胞免疫治疗CRC选择治疗靶点的策略,分析该治疗方式治疗CRC的制约因素,并展望CAR-T细胞免疫治疗CRC的前景。
中图分类号:
张天帅, 周乐其 综述, 于冠宇, 张卫 审校. CAR-T细胞免疫治疗结肠直肠癌的研究现状与展望[J]. 外科理论与实践, 2023, 28(05): 483-487.
ZHANG Tianshuai, ZHOU Leqi, YU Guanyu, ZHANG Wei. Current status and prospect of CAR-T cell immunotherapy for colorectal cancer[J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 483-487.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
doi: 10.3322/caac.v71.3 URL |
[2] | SIDDIQUI R S, SARDAR M. A systematic review of the role of chimeric antigen receptor T (CAR-T) cell therapy in the treatment of solid tumors[J]. Cureus, 2021, 13(4):e14494. |
[3] |
COUZIN-FRANKEL J. Breakthrough of the year 2013.Cancer immunotherapy[J]. Science, 2013, 342(6165):1432-1433.
doi: 10.1126/science.342.6165.1432 URL |
[4] |
STERNER R C, STERNER R M. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021, 11(4):69.
doi: 10.1038/s41408-021-00459-7 pmid: 33824268 |
[5] |
QI C, GONG J, LI J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6):1189-1198.
doi: 10.1038/s41591-022-01800-8 pmid: 35534566 |
[6] |
SUR D, HAVASI A, CAINAP C, et al. Chimeric antigen receptor T-cell therapy for colorectal cancer[J]. J Clin Med, 2020, 9(1):182.
doi: 10.3390/jcm9010182 URL |
[7] |
CREES Z D, GHOBADI A. Cellular therapy updates in B-cell lymphoma: the state of the CAR-T[J]. Cancers (Basel), 2021, 13(20):5181.
doi: 10.3390/cancers13205181 URL |
[8] |
MARTINEZ M, MOON E K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment[J]. Front Immunol, 2019, 10:128.
doi: 10.3389/fimmu.2019.00128 pmid: 30804938 |
[9] |
SNOOK A E, MAGEE M S, WALDMAN S A. GUCY2C-targeted cancer immunotherapy: past, present and future[J]. Immunol Res, 2011, 51(2-3):161-169.
doi: 10.1007/s12026-011-8253-7 pmid: 22038530 |
[10] |
MAGEE M S, ABRAHAM T S, BAYBUTT T R, et al. Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases[J]. Cancer Immunol Res, 2018, 6(5):509-516.
doi: 10.1158/2326-6066.CIR-16-0362 pmid: 29615399 |
[11] |
HAMMARSTRÖM S. The carcinoembryonic antigen(CEA) family: structures, suggested functions and expression in normal and malignant tissues[J]. Semin Cancer Biol, 1999, 9(2):67-81.
doi: 10.1006/scbi.1998.0119 URL |
[12] |
HALL C, CLARKE L, PAL A, et al. A review of the role of carcinoembryonic antigen in clinical practice[J]. Ann Coloproctol, 2019, 35(6):294-305.
doi: 10.3393/ac.2019.11.13 pmid: 31937069 |
[13] |
XU J, MENG Q, SUN H, et al. HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer[J]. Cell Death Dis, 2021, 12(12):1109.
doi: 10.1038/s41419-021-04100-0 pmid: 34839348 |
[14] |
LI W, ZHOU Y, WU Z, et al. Targeting Wnt signaling in the tumor immune microenvironment to enhancing EpCAM CAR T-Cell therapy[J]. Front Pharmacol, 2021, 12:724306.
doi: 10.3389/fphar.2021.724306 URL |
[15] |
ZHANG B L, LI D, GONG Y L, et al. Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer[J]. Hum Gene Ther, 2019, 30(4):402-412.
doi: 10.1089/hum.2018.229 URL |
[16] |
DARCY P K, HAYNES N M, SNOOK M B, et al. Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL[J]. J Immunol, 2000, 164(7):3705-3712.
doi: 10.4049/jimmunol.164.7.3705 URL |
[17] |
ZHANG C, WANG Z, YANG Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers[J]. Mol Ther, 2017, 25(5):1248-1258.
doi: 10.1016/j.ymthe.2017.03.010 URL |
[18] |
MORELLO A, SADELAIN M, ADUSUMILLI P S. Mesothelin-targeted CARs: driving T cells to solid tumors[J]. Cancer Discov, 2016, 6(2):133-146.
doi: 10.1158/2159-8290.CD-15-0583 pmid: 26503962 |
[19] |
ZHANG Q, LIU G, LIU J, et al. The antitumor capacity of mesothelin-CAR-T cells in targeting solid tumors in mice[J]. Mol Ther Oncolytics, 2021, 20:556-568.
doi: 10.1016/j.omto.2021.02.013 URL |
[20] |
FREY N, PORTER D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4):e123-e127.
doi: 10.1016/j.bbmt.2018.12.756 URL |
[21] |
FREYER C W, PORTER D L. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies[J]. J Allergy Clin Immunol, 2020, 146(5):940-948.
doi: 10.1016/j.jaci.2020.07.025 pmid: 32771558 |
[22] |
AHMED N, BRAWLEY V S, HEGDE M, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma[J]. J Clin Oncol, 2015, 33(15):1688-1696.
doi: 10.1200/JCO.2014.58.0225 pmid: 25800760 |
[23] |
MORGAN R A, YANG J C, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther, 2010, 18(4):843-851.
doi: 10.1038/mt.2010.24 pmid: 20179677 |
[24] |
PARKHURST M R, YANG J C, Langan R C, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J]. Mol Ther, 2011, 19(3):620-626.
doi: 10.1038/mt.2010.272 pmid: 21157437 |
[25] |
BHOWMICK N A, NEILSON E G, Moses H L. Stromal fibroblasts in cancer initiation and progression[J]. Nature, 2004, 432(7015):332-337.
doi: 10.1038/nature03096 |
[26] |
LIU G, RUI W, ZHAO X, et al. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment[J]. Cell Mol Immunol, 2021, 18(5):1085-1095.
doi: 10.1038/s41423-021-00655-2 pmid: 33785843 |
[27] |
BIFFI G, TUVESON D A. Diversity and biology of cancer-associated fibroblasts[J]. Physiol Rev, 2021, 101(1):147-176.
doi: 10.1152/physrev.00048.2019 URL |
[28] |
CHEN Y, ZHENG X, WU C. The role of the tumor microenvironment and treatment strategies in colorectal cancer[J]. Front Immunol, 2021, 12:792691.
doi: 10.3389/fimmu.2021.792691 URL |
[29] |
DE JAEGHERE E A, DENYS H G, DE WEVER O. Fibroblasts fuel immune escape in the tumor microenvironment[J]. Trends Cancer, 2019, 5(11):704-723.
doi: S2405-8033(19)30192-X pmid: 31735289 |
[30] |
JAHANAFROOZ Z, MOSAFER J, AKBARI M, et al. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment[J]. J Cell Physiol, 2020, 235(5):4153-4166.
doi: 10.1002/jcp.29337 pmid: 31647128 |
[31] | HASAN M N, CAPUK O, PATEL S M, et al. The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity[J]. Cancers(Basel), 2022, 14(14):3331. |
[32] |
SCOTT E N, GOCHER A M, WORKMAN C J, et al. Regulatory T cells: barriers of immune infiltration into the tumor microenvironment[J]. Front Immunol, 2021, 12:702726.
doi: 10.3389/fimmu.2021.702726 URL |
[33] |
TIAN Y, LI Y, SHAO Y, et al. Gene modification strategies for next-generation CAR T cells against solid cancers[J]. J Hematol Oncol, 2020, 13(1):54.
doi: 10.1186/s13045-020-00890-6 |
[34] |
GOLUBOVSKAYA V, BERAHOVICH R, ZHOU H, et al. CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth[J]. Cancers (Basel), 2017, 9(10):139.
doi: 10.3390/cancers9100139 URL |
[35] |
WILKIE S, VAN SCHALKWYK M C, HOBBS S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling[J]. J Clin Immunol, 2012, 32(5):1059-1070.
doi: 10.1007/s10875-012-9689-9 pmid: 22526592 |
[36] | CARUANA I, SAVOLDO B, HOYOS V, et al. Hepara-nase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nat Med, 2015, 21(5):524-529. |
[37] |
WANG L C, LO A, SCHOLLER J, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]. Cancer Immunol Res, 2014, 2(2):154-166.
doi: 10.1158/2326-6066.CIR-13-0027 URL |
[38] |
HILTBRUNNER S, BRITSCHGI C, SCHUBERTH P, et al. Local delivery of CAR T cells targeting fibroblast activation protein is safe in patients with pleural mesothelioma: first report of FAPME, a phase Ⅰ clinical trial[J]. Ann Oncol, 2021, 32(1):120-121.
doi: 10.1016/j.annonc.2020.10.474 URL |
[39] |
BURGA R A, THORN M, POINT G R, et al. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T[J]. Cancer Immunol Immunother, 2015, 64(7):817-829.
doi: 10.1007/s00262-015-1692-6 pmid: 25850344 |
[1] | 杨盈赤, 庞凯, 张忠涛. 新辅助放疗联合免疫治疗对直肠癌微创术式应用的影响[J]. 外科理论与实践, 2023, 28(03): 186-189. |
[2] | 韩序, 王文权, 楼文晖, 刘亮. 免疫检查点抑制剂治疗胃肠胰神经内分泌肿瘤的进展[J]. 外科理论与实践, 2023, 28(03): 267-272. |
[3] | 邢颖, 程石. 胆囊癌新辅助治疗的现状和争议[J]. 外科理论与实践, 2023, 28(02): 110-114. |
[4] | 李建芳, 余俊贤, 严超, 朱正纲, 刘炳亚. 胃癌基础与转化研究的热点问题[J]. 外科理论与实践, 2023, 28(01): 7-16. |
[5] | 任佳逸, 糜坚青. 新型抗体类药物在急性B淋巴细胞白血病中的治疗进展[J]. 内科理论与实践, 2022, 17(06): 463-467. |
[6] | 殷剑光, 宗雅萍, 沈晓卉, 赵敬坤, 陆爱国. 同时性多原发结肠直肠癌治疗与预后分析(附39例报告)[J]. 外科理论与实践, 2022, 27(06): 540-544. |
[7] | 张天羽, 周东, 洪桢. 《儿童抗NMDAR脑炎治疗的国际共识推荐》解读[J]. 诊断学理论与实践, 2022, 21(06): 677-683. |
[8] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[9] | 张希昊, 章馨允, 曹曼卿, 张金梁, 王华琪, 张苏, 付周, 王鲁, 张倜. 肝细胞癌的抗血管生成免疫联合介入治疗:肝动脉灌注化疗与化疗栓塞疗效的比较[J]. 外科理论与实践, 2022, 27(02): 152-157. |
[10] | 于颖彦. 免疫检查点及其抑制剂的发展[J]. 内科理论与实践, 2022, 17(01): 48-52. |
[11] | 王思颖,郑幸玲,覃文新. 癌症患者能否长期生存?[J]. 上海交通大学学报, 2021, 55(Sup.1): 49-50. |
[12] | 宗春燕,沈键锋. 免疫治疗能否治愈肿瘤?[J]. 上海交通大学学报, 2021, 55(Sup.1): 53-54. |
[13] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[14] | 刘诗光, 赵敬坤, 陆爱国, 毛志海. 趋化因子CXCL5和程序性死亡配体 1在结肠直肠癌组织的表达与病人预后的关系[J]. 外科理论与实践, 2021, 26(06): 543-549. |
[15] | 杨哲宇, 陆骋豪(综述), 蔡伟(审校). 浆细胞样树突状细胞与肿瘤免疫研究的新进展[J]. 外科理论与实践, 2021, 26(06): 568-572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||