外科理论与实践 ›› 2024, Vol. 29 ›› Issue (03): 264-269.doi: 10.16139/j.1007-9610.2024.03.14
收稿日期:
2024-06-11
出版日期:
2024-05-25
发布日期:
2024-09-03
通讯作者:
赵任,E-mail: zhaorensurgeon@aliyun.com基金资助:
JIA Wenqing, ZHANG Tao, ZHAO Ren()
Received:
2024-06-11
Online:
2024-05-25
Published:
2024-09-03
摘要:
结肠直肠癌(CRC)是全球发病率排名第3、但死亡率排名第2的恶性肿瘤。肿瘤疫苗是一种新型免疫治疗方式,向机体递呈肿瘤抗原,诱导抗肿瘤免疫应答,以形成长期免疫记忆。本文综述不同类型CRC疫苗近5年代表性临床/基础研究进展并展望未来。
中图分类号:
贾文清, 张弢, 赵任. 结肠直肠癌肿瘤疫苗研究现状及展望[J]. 外科理论与实践, 2024, 29(03): 264-269.
JIA Wenqing, ZHANG Tao, ZHAO Ren. Research status and prospects of colorectal cancer vaccine[J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 264-269.
[3] | LENZ H J, VAN CUTSEM E, LUISA LIMON M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ checkmate 142 study[J]. J Clin Oncol, 2022, 40(2):161-170. |
[4] | CARLSEN L, HUNTINGTON K E, EL-DEIRY W S. Immunotherapy for colorectal cancer: mechanisms and predictive biomarkers[J]. Cancers(Basel), 2022, 14(4):1028. |
[5] |
SAXENA M, VAN DER BURG S H, MELIEF C J M, et al. Therapeutic cancer vaccines[J]. Nat Rev Cancer, 2021, 21(6):360-378.
doi: 10.1038/s41568-021-00346-0 pmid: 33907315 |
[6] |
SAHIN U, TÜRECI Ö. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382):1355-1360.
doi: 10.1126/science.aar7112 pmid: 29567706 |
[7] | JIA W, ZHANG T, HUANG H, et al. Colorectal cancer vaccines: the current scenario and future prospects[J]. Front Immunol, 2022, 13:942235. |
[8] | HUBBARD J M, TŐKE E R, MORETTO R, et al. Safety and activity of PolyPEPI1018 combined with maintenance therapy in metastatic colorectal cancer: an open-label, multicenter, phase Ⅰb study[J]. Clin Cancer Res, 2022, 28(13):2818-2829. |
[9] | PASCOLUTTI R, YETURU L, PHILIPPIN G, et al. ATP128 clinical therapeutic cancer vaccine activates NF-κB and IRF3 pathways through TLR4 and TLR2 in human monocytes and dendritic cells[J]. Cancers(Basel), 2022, 14(20):5134. |
[10] | KOPETZ S, PRENEN H, SHARMA S, et al. SO-11 KISIMA-01 trial: safety, tolerability and immunogenicity of ATP128 with or without ezabenlimab (BI 754091) in patients with stage Ⅳ colorectal cancer - preliminary results from a phase Ⅰb study[J]. Ann Oncol, 2021, 32:S206-S207. |
[11] | ZHENG Y, FU Y, WANG P P, et al. Neoantigen: a pro-mising target for the immunotherapy of colorectal cancer[J]. Dis Markers, 2022, 2022:8270305. |
[12] | SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662):222-226. |
[13] | YU Y J, SHAN N, LI L Y, et al. Preliminary clinical study of personalized neoantigen vaccine therapy for microsatellite stability (MSS)-advanced colorectal cancer[J]. Cancer Immunol Immunother, 2023, 72(7):2045-2056. |
[14] |
PANT S, WAINBERG Z A, WEEKES C D, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial[J]. Nat Med, 2024, 30(2):531-542.
doi: 10.1038/s41591-023-02760-3 pmid: 38195752 |
[15] |
LIU C, SHI Q, HUANG X, et al. mRNA-based cancer therapeutics[J]. Nat Rev Cancer, 2023, 23(8):526-543.
doi: 10.1038/s41568-023-00586-2 pmid: 37311817 |
[16] | LOPEZ J S, CAMIDGE R, IAFOLLA M, et al. Abstract CT301: a phase Ⅰb study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors[J]. Cancer Res, 2020, 80(16_Supplement):CT301-CT301. |
[17] |
PALMER C D, RAPPAPORT A R, DAVIS M J, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results[J]. Nat Med, 2022, 28(8):1619-1629.
doi: 10.1038/s41591-022-01937-6 pmid: 35970920 |
[18] | CATENACCI D V, LIAO C Y, MARON S, et al. 960MO Clinical outcomes and immune responses in a phase Ⅰ/Ⅱ study of personalized, neoantigen-directed immunotherapy in patients with advanced MSS-CRC, GEA and NSCLC[J]. Ann Oncol, 2021, 32:S830-S831. |
[19] | GRISTONE BIOLOGY. Gritstone announces updated overall survival results from granite phase Ⅰ/Ⅱ study and poster at SITC 2022[EB/OL]. (2022-11-10)[2024-06-11]. https://ir.gritstonebio.com/news-releases/news-release-details/gritstone-announces-updated-overall-survival-results-granite. |
[20] | REN Y, MANOHARAN T, LIU B, et al. Circular RNA as a source of neoantigens for cancer vaccines[J]. J Immunother Cancer, 2024, 12(3):e008402. |
[21] | SMALL E J, SCHELLHAMMER P F, HIGANO C S, et al. Placebo-controlled phase Ⅲ trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer[J]. J Clin Oncol, 2006, 24(19):3089-3094. |
[22] | RODRIGUEZ J, CASTAÑÓN E, PEREZ-GRACIA J L, et al. A randomized phase Ⅱ clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis[J]. J Immunother Cancer, 2018, 6(1):96. |
[23] | ESPAÑOL-REGO M, FERNÁNDEZ-MARTOS C, ELEZ E, et al. A phase Ⅰ-Ⅱ multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study[J]. Cancer Immunol Immunother, 2023, 72(4):827-840. |
[24] | MARUOKA S, OJIMA T, IWAMOTO H, et al. Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro[J]. Sci Rep, 2022, 12(1):3295. |
[25] | HARRIS J E, RYAN L, HOOVER H C, et al. Adjuvant active specific immunotherapy for stage Ⅱ and Ⅲ colon cancer with an autologous tumor cell vaccine: eastern cooperative oncology group study E5283[J]. J Clin Oncol, 2000, 18(1):148-157. |
[26] | BAARS A, CLAESSEN A M E, WAGSTAFF J, et al. A phase Ⅱ study of active specific immunotherapy and5-FU/Leucovorin as adjuvant therapy for stage Ⅲ colon carcinoma[J]. Br J Cancer, 2002, 86(8):1230-1234. |
[27] | YARCHOAN M, HUANG C Y, ZHU Q, et al. A phase 2 study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with mismatch repair proficient advanced colorectal cancer[J]. Cancer Med, 2020, 9(4):1485-1494. |
[28] |
JIA W, SHEN X, GUO Z, et al. The future of cancer vaccines against colorectal cancer[J]. Expert Opin Biol Ther, 2024, 24(4):269-284.
doi: 10.1080/14712598.2024.2341744 pmid: 38644655 |
[29] |
LAROCCA C, SCHLOM J. Viral vector-based therapeutic cancer vaccines[J]. Cancer J, 2011, 17(5):359-371.
doi: 10.1097/PPO.0b013e3182325e63 pmid: 21952287 |
[30] |
MORSE M A, CHAUDHRY A, GABITZSCH E S, et al. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients[J]. Cancer Immunol Immunother, 2013, 62(8):1293-1301.
doi: 10.1007/s00262-013-1400-3 pmid: 23624851 |
[31] | REDMAN J M, TSAI Y T, WEINBERG B A, et al. A randomized phase Ⅱ trial of mFOLFOX6 + Bevacizumab alone or with AdCEA vaccine + Avelumab immunotherapy for untreated metastatic colorectal cancer[J]. Oncologist, 2022, 27(3):198-209. |
[32] | OLADEJO M, PATERSON Y, WOOD L M. Clinical experience and recent advances in the development of Listeria-based tumor immunotherapies[J]. Front Immunol, 2021, 12:642316. |
[33] | YU Y, ZHANG J, NI L, et al. Neoantigen-reactive T cells exhibit effective anti-tumor activity against colorectal cancer[J]. Hum Vaccin Immunother, 2022, 18(1):1-11. |
[34] | CLEYLE J, HARDY M P, MINATI R, et al. Immunopeptidomic analyses of colorectal cancers with and without microsatellite instability[J]. Mol Cell Proteomics, 2022, 21(5):100228. |
[35] | PLEGUEZUELOS-MANZANO C, PUSCHHOF J, ROSENDAHL HUBER A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[J]. Nature, 2020, 580(7802):269-273. |
[36] |
DEJEA C M, FATHI P, CRAIG J M, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359(6375):592-597.
doi: 10.1126/science.aah3648 pmid: 29420293 |
[37] | HOLT R A. Oncomicrobial vaccines: the potential for a Fusobacterium nucleatum vaccine to improve colorectal cancer outcomes[J]. Cell Host Microbe, 2023, 31(1):141-145. |
[38] | PADMA S, PATRA R, SEN GUPTA P S, et al. Cell surface fibroblast activation protein-2 (fap2) of Fusobacterium nucleatum as a vaccine candidate for therapeutic intervention of human colorectal cancer: an immunoinformatics approach[J]. Vaccines(Basel), 2023, 11(3):525. |
[39] |
PRIYAMVADA P, RAMAIAH S. Pan-genome and reverse vaccinology approaches to design multi-epitope vaccine against Epstein-Barr virus associated with colorectal cancer[J]. Immunol Res, 2023, 71(6):887-908.
doi: 10.1007/s12026-023-09403-2 pmid: 37423939 |
[40] | KHAN S, AZIZ S, WAQAS M, et al. Targeted vaccine development against bilophila wadsworthia to curb colon diseases: a multiepitope approach based on reverse vaccinology and computational analysis[J]. Int J Biol Macromol, 2023, 250:126002. |
[41] | MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. Engineering precision nanoparticles for drug deli-very[J]. Nat Rev Drug Discov, 2021, 20(2):101-124. |
[42] |
BLOOM K, VAN DEN BERG F, ARBUTHNOT P. Self-amplifying RNA vaccines for infectious diseases[J]. Gene Ther, 2021, 28(3-4):117-129.
doi: 10.1038/s41434-020-00204-y pmid: 33093657 |
[43] | SCHIMANSKI C C, KASPER S, HEGEWISCH-BECKER S, et al. Adjuvant MUC vaccination with te-cemotide after resection of colorectal liver metastases: a randomized, double-blind, placebo-controlled, multicenter AIO phase Ⅱ trial (LICC)[J]. Oncoimmunology, 2020, 9(1):1806680. |
[44] | MOEHLER M, FOLPRECHT G, HEINEMANN V, et al. Survival after secondary liver resection in metastatic colorectal cancer: comparing data of three prospective randomized European trials ( LICC, CELIM, FIRE ‐3)[J]. Int J Cancer, 2022, 150(8):1341-1349. |
[45] | HORNBUCKLE K, FRITZ C D L. What is lynch syndrome?[J]. JAMA, 2024, 332(2):178. |
[46] | BOLIVAR A M, DUZAGAC F, SINHA K M, et al. Advances in vaccine development for cancer prevention and treatment in lynch syndrome[J]. Mol Aspects Med, 2023, 93:101204. |
[1] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. |
[2] | ANDRÉ T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23):2207-2218. |
[47] | D’ALISE M, WILLIS J, LEONI G, et al. 1526 Nous-209 genetic vaccine encoding shared cancer neoantigens is safe and elicits robust immune response in healthy lynch syndrome carriers: interim results from phase Ⅰ cancer interception trial[J]. BMJ Publishing Group Ltd,2023,A1751-A1751. |
[48] | JACKSON K, SAMADDAR S, MARKIEWICZ M A, et al. Vaccination-based immunoprevention of colorectal tumors: a primer for the clinician[J]. J Clin Gastroenterol, 2023, 57(3):246-252. |
[1] | 陈芳倩, 冯雯卿 综述, 赵敬坤, 宗雅萍, 陆爱国 审校. T1期结肠直肠癌淋巴结转移相关危险因素的研究进展[J]. 外科理论与实践, 2024, 29(04): 358-364. |
[2] | 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 腹腔镜结肠直肠癌手术的标准化操作、质量控制与疗效评价[J]. 外科理论与实践, 2024, 29(03): 187-191. |
[3] | 朱惠, 蔡继东, 李溟涵, 杨文涛, 徐烨. 结肠直肠癌错配修复蛋白表达与微卫星稳定性的一致性分析[J]. 外科理论与实践, 2024, 29(02): 148-155. |
[4] | 赵一鸣, 吴棕, 王鲁. 肝脏微环境细胞对结肠直肠癌肝转移的作用[J]. 外科理论与实践, 2024, 29(02): 126-131. |
[5] | 张天帅, 周乐其 综述, 于冠宇, 张卫 审校. CAR-T细胞免疫治疗结肠直肠癌的研究现状与展望[J]. 外科理论与实践, 2023, 28(05): 483-487. |
[6] | 殷剑光, 宗雅萍, 沈晓卉, 赵敬坤, 陆爱国. 同时性多原发结肠直肠癌治疗与预后分析(附39例报告)[J]. 外科理论与实践, 2022, 27(06): 540-544. |
[7] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[8] | 刘诗光, 赵敬坤, 陆爱国, 毛志海. 趋化因子CXCL5和程序性死亡配体 1在结肠直肠癌组织的表达与病人预后的关系[J]. 外科理论与实践, 2021, 26(06): 543-549. |
[9] | 吴春晓, 龚杨明, 顾凯, 庞怡, 鲍萍萍, 王春芳, 施亮, 向詠梅, 窦剑明, 付晨, 施燕. 2016年上海市结肠直肠癌发病和死亡情况与2002—2016年间的变化趋势分析[J]. 外科理论与实践, 2021, 26(04): 325-335. |
[10] | 顾晋. 局部晚期结肠直肠癌治疗和联合脏器切除[J]. 外科理论与实践, 2021, 26(04): 290-296. |
[11] | 杨盈赤, 宋建宁, 张忠涛. 中国腹腔镜结肠直肠手术的回顾与展望——基于手术病例登记研究和数据库建立的思考[J]. 外科理论与实践, 2021, 26(04): 277-280. |
[12] | 茅届齐, 徐多刚, 张米粒, 肖蕴誉, 明旭, 李雨哲, 曹灿, 于亮, 李继坤. 结肠直肠癌病人D-二聚体升高的研究[J]. 外科理论与实践, 2021, 26(04): 361-366. |
[13] | 王常刚, 刘坤, 冯浩然, 蒋奕玫, 施毅卿, 陈献则, 宋子甲, 李军, 李佑, 蔡东莉, 赵任. 结肠直肠癌B7S1表达与免疫浸润的关系[J]. 外科理论与实践, 2021, 26(04): 336-342. |
[14] | 杨飖, 傅传刚. NOSES在结肠直肠癌手术中的应用现状与展望[J]. 外科理论与实践, 2021, 26(04): 305-311. |
[15] | 张弢, 叶枫, 赵任. 结肠直肠癌的微创手术——在工具和价值间的不断平衡优化[J]. 外科理论与实践, 2021, 26(04): 300-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||