外科理论与实践 ›› 2024, Vol. 29 ›› Issue (02): 148-155.doi: 10.16139/j.1007-9610.2024.02.10
朱惠a, 蔡继东b,*, 李溟涵c, 杨文涛c(), 徐烨c
收稿日期:
2024-02-24
出版日期:
2024-03-25
发布日期:
2024-07-01
通讯作者:
杨文涛,E-mail: yangwt97@163.com作者简介:
共同第一作者
ZHU Huia, CAI Jidongb,*, LI Minghanc, YANG Wentaoc(), XU Yec
Received:
2024-02-24
Online:
2024-03-25
Published:
2024-07-01
摘要:
目的:探究免疫组织化学(IHC)检测错配修复(MMR)状态与二代测序(NGS)鉴定的微卫星不稳定性(MSI)的一致性,并评估其结果与中国结肠直肠癌(CRC)病人临床特征的相关性。方法:采用IHC和NGS测序分别鉴定CRC的MMR及MSI状态,评估不同检测方式的一致性。结果:IHC与NGS检测方式一致性为98.36%,一致性良好(Kappa=0.856)。pMMR/MSI-H亚型中存在一定的致病性或可能致病性胚系变异,dMMR/MSS亚型中MLH1和PMS2共同缺失最为常见。分型不一致的病人多集中于发病较早的右半结肠(P<0.01),且分化相对较差。结论:经IHC和NGS检测的MSI一致性很好,可高达98%以上。为避免因MSI状态误诊而影响临床医师对治疗方案的决策,对于分化较差的早期阶段右半结肠必须高度重视MSI分析的准确性。
中图分类号:
朱惠, 蔡继东, 李溟涵, 杨文涛, 徐烨. 结肠直肠癌错配修复蛋白表达与微卫星稳定性的一致性分析[J]. 外科理论与实践, 2024, 29(02): 148-155.
ZHU Hui, CAI Jidong, LI Minghan, YANG Wentao, XU Ye. Consistency analysis of mismatch repair protein expression and microsatellite stability in colorectal cancer[J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 148-155.
表1
采用IHC和NGS检测的微卫星状态的CRC的临床特征[n(%)/M(Q1~Q3)]
Clinical Characteristics | 总计 (n=2 196) | IHC | P value | NGS | P value | ||||
---|---|---|---|---|---|---|---|---|---|
pMMR (n=2 069) | dMMR(n=127) | χ2 value | MSI-H (n=139) | MSS (n=2 057) | χ2 value | ||||
Gender | |||||||||
Male | 1 313 (59.79) | 1 234 (59.64) | 79(62.20) | 0.326 8 | 0.567 6 | 83 (59.71) | 1 230 (59.80) | 0.000 4 | 0.984 5 |
Female | 883 (40.21) | 835 (40.36) | 48 (37.80) | 56 (40.29) | 827 (40.20) | ||||
Age | |||||||||
mAge(range) | 61 (20-93) | 61 (21-93) | 55 (20.88) | 55 (20-88) | 61 (21-93) | ||||
≤60 | 1 075 (48.95) | 999 (48.28) | 76 (59.84) | 6.396 9 | 0.011 | 82 (58.99) | 993 (48.27) | 5.986 1 | 0.014 4 |
>60 | 1 121 (51.05) | 1 070 (51.72) | 51 (40.16) | 57 (41.01) | 1 064 (51.73) | ||||
Primary site | |||||||||
Left | 1 625 (74.00) | 1 583 (76.51) | 42 (33.07) | 117.348 0 | <0.01 | 47 (33.81) | 1 578 (76.71) | 124.543 0 | <0.01 |
Right | 571 (26.00) | 486 (23.49) | 85 (66.93) | 92 (66.19) | 479 (23.29) | ||||
AJCC | |||||||||
Ⅰ-Ⅲ | 1 645 (74.91) | 1 529 (73.90) | 116 (91.34) | 19.358 9 | <0.01 | 125 (89.93) | 1 520 (73.89) | 17.804 9 | <0.01 |
Ⅳ | 551 (25.09) | 540 (26.10) | 11 (8.66) | 14 (10.07) | 537 (26.11) | ||||
Differentiation | |||||||||
Well | 39 (1.78) | 36 (1.74) | 3 (2.36) | 19.070 3 | <0.01 | 1 (0.72) | 38 (1.85) | 19.160 6 | <0.01 |
Medium | 1 476 (67.21) | 1 413 (68.29) | 63 (49.61) | 72 (51.80) | 1 404 (68.25) | ||||
Low | 681 (31.01) | 620 (29.97) | 61 (48.03) | 66 (47.48) | 615 (29.90) |
表3
NGS检测的MSI-H亚组MMR基因胚系突变情况[n (%)]
Type of causation | Pathogenic variants | Likely pathogenic variants | |||
---|---|---|---|---|---|
MMR | n (%) | Type of variation | n (%) | Type of variation | |
MLH1 | 9 (26.47) | Missense mutation×3, non-frameshift deletion×2, Frame shift missing×1, frame shift insertion×1,splice×1, intron×1 | 6 (17.65) | Frameshift missing×3, complex mutation×1,missense mutation×1,splice×1 | |
MSH2 | 4 (11.76) | Frameshift missing×3 Splice×1 | 5 (14.71) | Frameshift insertion×2 Frameshift missing×3 | |
MSH6 | 3 (8.82) | Stop×2 Frame shift insertion×1 | 1 (2.94) | Frame shift insertion×1 | |
PMS2 | 1 (2.94) | Stop×1 | 5 (14.71) | Frameshift missing×2, Stop×1, Frameshift insertion×1 | |
Total | 17 (50.00) | 17 (50.00) |
表6
不一致的微卫星状态下NGS测序中MMR基因胚系变异情况
Case(n) | Germline mutations | MMR status | MSI status | Gene | Type of variation | Type of causation |
---|---|---|---|---|---|---|
19 | No | pMMR | MSI-H | - | - | - |
1 | Yes | pMMR | MSI-H | PMS2 | Stop | Pathogenic |
1 | Yes | pMMR | MSI-H | MSH6 | Frame shift insertion | Pathogenic |
1 | Yes | pMMR | MSI-H | MSH6 | Frame shift insertion | Likely |
1 | Yes | pMMR | MSI-H | MLH1 | Frame shift missing | Pathogenic |
1 | Yes | pMMR | MSI-H | PMS2 | Frame shift insertion | Likely |
表7
微卫星状态不一致的CRC临床特征[n (%)/M(Q1~Q3)]
Clinical Characteristics | Total (n=2 196) | Consistent (n=2 160) | Inconsistent (n=36) | χ2 value | P value |
---|---|---|---|---|---|
Gender | |||||
Male | 1 313 (59.79) | 1 293 (59.86) | 20 (55.56) | 0.273 0 | 0.601 3 |
Female | 883 (40.21) | 867 (40.14) | 16 (44.44) | ||
Age | |||||
mAge(range) | 61 (20.93) | 63 (20-93) | 63 (29-80) | ||
≤60 | 1 075 (48.95) | 1 061 (49.12) | 14 (38.89) | 1.483 3 | 0.223 2 |
>60 | 1 121 (51.05) | 1 099 (50.88) | 22 (61.11) | ||
Primary site | |||||
Left | 1 625 (74.00) | 1 608 (74.44) | 17 (47.22) | 13.637 9 | <0.01 |
Right | 571 (26.00) | 552 (25.56) | 19 (52.78) | ||
AJCC | |||||
Ⅰ-Ⅲ | 1 645 (74.91) | 1 616 (74.81) | 29 (80.56) | 0.620 9 | 0.430 7 |
Ⅳ | 551 (25.09) | 544 (25.19) | 7 (19.44) | ||
Differentiation | |||||
Well | 39 (1.78) | 37 (1.71) | 2 (5.56) | 3.680 3 | 0.158 8 |
Medium | 1 476 (67.21) | 1 455 (67.36) | 21 (58.33) | ||
Low | 681 (31.01) | 668 (30.93) | 13 (36.11) |
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
[2] | SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48. |
[3] | ZHANG Y, CHEN Z, LI J. The current status of treatment for colorectal cancer in China: a systematic review[J]. Medicine (Baltimore), 2017, 96(40):e8242. |
[4] | LOUGHREY M B, MCGRATH J, COLEMAN H G, et al. Identifying mismatch repair-deficient colon cancer: near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series[J]. Histopathology, 2021, 78(3):401-413. |
[5] |
LATHAM A, SRINIVASAN P, KEMEL Y, et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer[J]. J Clin Oncol, 2019, 37(4): 286-295.
doi: 10.1200/JCO.18.00283 pmid: 30376427 |
[6] |
YAMAMOTO H, IMAI K. Microsatellite instability: an update[J]. Arch Toxicol, 2015, 89(6):899-921.
doi: 10.1007/s00204-015-1474-0 pmid: 25701956 |
[7] | CHUNG J, MARUVKA Y E, SUDHAMAN S, et al. DNA polymerase and mismatch repair exert distinct microsatellite instability signatures in normal and malignant human cells[J]. Cancer Discov, 2021, 11(5):1176-1191. |
[8] | YE M, RU G, YUAN H, et al. Concordance between microsatellite instability and mismatch repair protein expression in colorectal cancer and their clinicopathological characteristics: a retrospective analysis of 502 cases[J]. Front Oncol, 2023,13:1178772. |
[9] |
CHEN J, YAN Q, SUN J, et al. Microsatellite status detection of colorectal cancer: evaluation of inconsistency between PCR and IHC[J]. J Cancer, 2023, 14(7):1132-1140.
doi: 10.7150/jca.81675 pmid: 37215453 |
[10] | MIDDHA S, ZHANG L, NAFA K, et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data[J]. JCO Precis Oncol, 2017,2017:PO.17.00084. |
[11] |
NIU B, YE K, ZHANG Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data[J]. Bioinformatics, 2014, 30(7):1015-1016.
doi: 10.1093/bioinformatics/btt755 pmid: 24371154 |
[12] |
LE D T, DURHAM J N, SMITH K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413.
doi: 10.1126/science.aan6733 pmid: 28596308 |
[13] | DIAO Z, HAN Y, CHEN Y, et al. The clinical utility of microsatellite instability in colorectal cancer[J]. Crit Rev Oncol Hematol, 2021,157:103171. |
[14] | MARABELLE A, LE D T, ASCIERTO P A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase Ⅱ KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38(1):1-10. |
[15] | KAWAKAMI H, ZAANAN A, SINICROPE F A. Microsatellite instability testing and its role in the management of colorectal cancer[J]. Curr Treat Options Oncol, 2015, 16(7):30. |
[16] | LAU D K, BURGE M, ROY A, et al. Update on optimal treatment for metastatic colorectal cancer from the AGITG expert meeting: ESMO congress 2019[J]. Expert Rev Anticancer Ther, 2020, 20(4):251-270. |
[17] |
MARCUS L, LEMERY S J, KEEGAN P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758.
doi: 10.1158/1078-0432.CCR-18-4070 pmid: 30787022 |
[18] |
SARGENT D J, MARSONI S, MONGES G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer[J]. J Clin Oncol, 2010, 28(20):3219-3226.
doi: 10.1200/JCO.2009.27.1825 pmid: 20498393 |
[19] |
COHEN R, HAIN E, BUHARD O, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status[J]. JAMA Oncol, 2019, 5(4):551-555.
doi: 10.1001/jamaoncol.2018.4942 pmid: 30452494 |
[20] |
YOSHINO T, PENTHEROUDAKIS G, MISHIMA S, et al. JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions[J]. Ann Oncol, 2020, 31(7):861-872.
doi: S0923-7534(20)36386-9 pmid: 32272210 |
[21] |
DEDEURWAERDERE F, CLAES K B, VAN DORPE J, et al. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer[J]. Sci Rep, 2021, 11(1):12880.
doi: 10.1038/s41598-021-91974-x pmid: 34145315 |
[22] |
ADAM R, SPIER I, ZHAO B, et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis[J]. Am J Hum Genet, 2016, 99(2):337-351.
doi: 10.1016/j.ajhg.2016.06.015 pmid: 27476653 |
[23] | EVRARD C, TACHON G, RANDRIAN V, et al. Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer[J]. Cancers (Basel), 2019, 11(10):1567. |
[24] | LI G M. Mechanisms and functions of DNA mismatch repair[J]. Cell Res, 2008, 18(1):85-98. |
[25] | BAI H, WANG R, CHENG W, et al. Evaluation of concordance between deficient mismatch repair and microsatellite instability testing and their association with clinicopathological features in colorectal cancer[J]. Cancer Manag Res, 2020,12:2863-2873. |
[26] |
CHEAH P L, LI J, LOOI L M, et al. Screening for microsatellite instability in colorectal carcinoma: practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting[J]. Malays J Pathol, 2019, 41(2):91-100.
pmid: 31427545 |
[27] | LUCHINI C, BIBEAU F, LIGTENBERG M J L, et al. ESMO recommendations on microsatellite instability tes-ting for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019, 30(8):1232-1243. |
[28] |
SALAHSHOR S, KOELBLE K, RUBIO C, et al. Microsatellite instability and hMLH1 and hMSH2 expression analysis in familial and sporadic colorectal cancer[J]. Lab Invest, 2001, 81(4):535-541.
doi: 10.1038/labinvest.3780262 pmid: 11304573 |
[29] | WANG C, KUANG W, ZENG J, et al. A retrospective study of consistency between immunohistochemistry and polymerase chain reaction of microsatellite instability in endometrial cancer[J]. PeerJ, 2023,11:e15920. |
[1] | 赵一鸣, 吴棕, 王鲁. 肝脏微环境细胞对结肠直肠癌肝转移的作用[J]. 外科理论与实践, 2024, 29(02): 126-131. |
[2] | 张莉莉, 谢思敏, 冯耘, $\boxed{\hbox{陈虹}}$. mNGS拟诊重症Ⅰ型单纯疱疹病毒肺炎4例诊治并文献复习[J]. 内科理论与实践, 2024, 19(01): 43-50. |
[3] | 吴文娟, 田文杰. 人类呼吸道微生物组及检测技术进展[J]. 内科理论与实践, 2024, 19(01): 37-42. |
[4] | 张天帅, 周乐其 综述, 于冠宇, 张卫 审校. CAR-T细胞免疫治疗结肠直肠癌的研究现状与展望[J]. 外科理论与实践, 2023, 28(05): 483-487. |
[5] | 王翠, 姜国刚, 崔晓利. 痰液分析对慢性阻塞性肺疾病诊疗及病情评估的研究进展[J]. 内科理论与实践, 2023, 18(05): 372-376. |
[6] | 刘泓源 顾豪 杨希 胡丽 徐梓安 陈辉 林晓曦. 一种基于DNA测序结果的静脉/淋巴管畸形新基因分型[J]. 组织工程与重建外科杂志, 2022, 18(3): 209-. |
[7] | 殷剑光, 宗雅萍, 沈晓卉, 赵敬坤, 陆爱国. 同时性多原发结肠直肠癌治疗与预后分析(附39例报告)[J]. 外科理论与实践, 2022, 27(06): 540-544. |
[8] | 徐娜娜, 吴涛, 毛东锋, 薛锋, 刘文慧, 王宗慧, 白海. 肾脏原发髓外浆细胞瘤1例[J]. 内科理论与实践, 2022, 17(03): 253-255. |
[9] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[10] | 杨春雪, 许海敏, 笪倩. 胰腺导管内嗜酸性乳头状瘤的临床病理学特征(附5例报告)[J]. 外科理论与实践, 2022, 27(01): 52-57. |
[11] | 刘诗光, 赵敬坤, 陆爱国, 毛志海. 趋化因子CXCL5和程序性死亡配体 1在结肠直肠癌组织的表达与病人预后的关系[J]. 外科理论与实践, 2021, 26(06): 543-549. |
[12] | 王昭晖, 吴海波. 胃神经鞘瘤31例临床病理学分析[J]. 诊断学理论与实践, 2021, 20(06): 552-556. |
[13] | 吴冬梅, 吴丽莉, 陈佳, 刘坤. 淋巴上皮样肝细胞肝癌一例报告附文献复习[J]. 诊断学理论与实践, 2021, 20(05): 498-501. |
[14] | 李娟, 刘劲松, 李梅, 李殿炜, 朱弘. 细支气管腺瘤10例临床病理分析及文献复习[J]. 诊断学理论与实践, 2021, 20(05): 466-470. |
[15] | 张华, 陆炜, 杨承翌, 项明洁. 血清人衰老关键蛋白1检测对结肠直肠癌的诊断和预后价值[J]. 诊断学理论与实践, 2021, 20(05): 462-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||