外科理论与实践 ›› 2025, Vol. 30 ›› Issue (03): 247-255.doi: 10.16139/j.1007-9610.2025.03.11
金佳斌a, 马君俊a,*, 叶枫a, 马诗瑜b(), 陈敬贤c(
)
收稿日期:
2024-12-20
出版日期:
2025-05-25
发布日期:
2025-09-01
通讯作者:
陈敬贤,E-mail:cjx11510@rjh.com.cn;作者简介:
第一联系人: 共同第一作者
基金资助:
JIN Jiabina, MA Junjuna,*, YE Fenga, MA Shiyub(), CHEN Jingxianc(
)
Received:
2024-12-20
Online:
2025-05-25
Published:
2025-09-01
摘要:
目的:探索槐耳抗胰腺癌的作用机制。方法:通过Herb数据库检索槐耳的化合物成分和靶点,通过GeneCards、NCBI、DisGeNET等在线数据库筛选胰腺癌相关靶点,绘制韦恩图获取药物与疾病交集靶点。采用String平台构建蛋白质-蛋白质相互作用(PPI)网络,利用Cytoscape3.8.0软件构建一系列网络图来筛选核心靶点并对靶基因进行GO分析和KEGG通路富集分析,最后通过AutoDock软件对关键活性成分与潜在作用靶点进行分子对接验证。使用Open GWAS数据库中的KEGG富集top20通路的基因和胰腺癌的全基因组关联分析数据进行孟德尔随机化分析进一步验证。结果:共筛选出4个槐耳有效成分,药物与疾病交集靶点112个。主要活性成分为山奈酚、芦丁、染料木素、葡萄糖醛酸,核心靶点为促分裂原活化蛋白激酶8(MAPK8)、尿苷二磷酸(UDP)-葡萄糖醛酸转移酶1家族多肽A1(UGT1A1)、超氧化物歧化酶2(SOD2)。作用机制可能与胰腺癌、肿瘤坏死因子(TNF)信号通路、白细胞介素(IL)-17信号通路等有关。分子对接显示主要活性成分与关键靶点具有很好的对接活性。经筛选保留了73个基因,24 195 229个单核苷酸多态性(SNP)用于双样本孟德尔随机化分析,分析结果表明,MAPK8可能是胰腺癌的重要治疗靶点。结论:槐耳可能通过作用于MAPK8产生抗胰腺癌的作用,为进一步验证槐耳治疗胰腺癌的作用机制提供了初步的理论依据。
中图分类号:
金佳斌, 马君俊, 叶枫, 马诗瑜, 陈敬贤. 基于网络药理学、分子对接和双样本孟德尔随机化分析探讨槐耳抗胰腺癌的作用机制[J]. 外科理论与实践, 2025, 30(03): 247-255.
JIN Jiabin, MA Junjun, YE Feng, MA Shiyu, CHEN Jingxian. Investigation of the mechanism of Huaier (Vanderbylia robiniophila) anti-pancreatic cancer based on network pharmacology, molecular docking, and two-sample Mendelian randomization analysis[J]. Journal of Surgery Concepts & Practice, 2025, 30(03): 247-255.
表2
MCODE聚类分析详细信息表
Cluster | Network | Nodes | Edges | Node IDs |
---|---|---|---|---|
1 | | 53 | 1 137 | SIRT1, INS, CDKN1A, PPARG, BCL2, PTGS2, CXCL1,MAPK8, CDK1, PPARA, TNF, GSK3B,STAT3, MMP9, PTEN, JUN, AKT1, ESR1, STAT1, RELA, FN1, CASP9, NOS2, AR, PGR, MMP1, CASP3, CXCL8, FOS, VCAM1, ATM, EGFR, ERBB2, TP53, CDK2, ICAM1, IL1B, MAPK3, MDM2, CCNB1, CCNA2, MAPK14, IGF1R, IFNG, CCL2, MPO, HIF1A, IKBKB, TGFB1, TIMP1, CDKN2A, HMOX1, MAPK1 |
2 | | 5 | 9 | NR1I2, GSTM1, UGT1A1, CYP1A2, CYP1B1 |
3 | | 5 | 6 | SOD1, SLC2A4, PPARGC1A, HMGCR, SOD2 |
[1] | RYAN D P, HONG T S, BARDEESY N. Pancreatic adenocarcinoma[J]. N Engl J Med, 2014, 371(11):1039-1049. |
[2] | KIM H, PARK S Y, PARK Y, et al. Assessment of learning curve and oncologic feasibility of robotic pancreaticoduodenectomy: a propensity score-based comparison with open approach[J]. J Hepatobiliary Pancreat Sci, 2022, 29(6):649-658. |
[3] | NAFFOUJE S A, POINTER D T Jr, SATYADI M A, et al. Surgical approach to pancreaticoduodenectomy for pancreatic adenocarcinoma:uncomplicated ends justify the means[J]. Surg Endosc, 2022, 36(7):4912-4922. |
[4] |
胡志强, 游伟程, 潘凯枫, 等. 中、美两国癌症流行特征分析——《2023美国癌症统计报告》解读[J]. 科技导报, 2023, 41(18):18-28.
doi: 10.3981/j.issn.1000-7857.2023.18.003 |
HU Z Q, YOU W C, PAN K F, et al. Epidemiological characteristics of cancers in China and America: interpretation of the report of American cancer statistics,2023[J]. Sci Technol Rev, 2023, 41(18):18-28. | |
[5] | 雷蕾, 高彦茹, 蔡洲, 等. 槐耳多糖通过抑制AKT/GSK3β/Snail信号通路抑制胰腺癌细胞增殖和上皮间质转化[J]. 现代肿瘤医学, 2023, 31(24):4536-4541. |
LEI L, GAO Y R, CAI Z, et al. Huaier polysaccharide inhibits proliferation and epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting AKT/GSK3β/Snail signaling pathway[J]. J Mod Oncol, 2023, 31(24):4536-4541. | |
[6] | FANG S, DONG L, LIU L, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine[J]. Nucleic acids res, 2021, 49(D1):D1197-D1206. |
[7] |
LOURENCO M V, FROZZA R L, DE FREITAS G B, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J]. Nat Med, 2019, 25(1):165-175.
doi: 10.1038/s41591-018-0275-4 pmid: 30617325 |
[8] | SAFRAN M, DALAH I, ALEXANDER J, et al. Gene-cards version 3: the human gene integrator[J]. Database(Oxford), 2010,2010:baq020. |
[9] | NCBI Resource Coordinators. Database resources of the national center for biotechnology information[J]. Nucleic Acids Res, 2018, 46(D1):D8-D13. |
[10] | PIÑERO J, BRAVO À, QUERALT-ROSINACH N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants[J]. Nucleic acids research, 2017, 45(D1):D833-D839. |
[11] | SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic acids research, 2019, 47(D1):D607-D613. |
[12] |
DONCHEVA N T, MORRIS J H, GORODKIN J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data[J]. J Proteome Res, 2019, 18(2):623-632.
doi: 10.1021/acs.jproteome.8b00702 pmid: 30450911 |
[13] |
SUN C, YUAN Q, WU D, et al. Identification of core genes and outcome in gastric cancer using bioinformatics analysis[J]. Oncotarget, 2017, 8(41):70271-70280.
doi: 10.18632/oncotarget.20082 pmid: 29050278 |
[14] | 邓叔群. 中国的真菌[M]. 北京: 北京科技出版社,1963:515. |
DENG S Q. Fungi of China[M]. Beijing: Beijing Science and Technology Press,1963:515. | |
[15] | 潘超, 郑吴彬, 付凯, 等. 槐耳清膏对胰腺癌细胞增殖和迁移的影响[J]. 江苏医药, 2019, 45(9):865-870,封2. |
PAN C, ZHENG W B, FU K, et al. Effects of Huaier cream on proliferation and migration of panereatie cancer cells[J]. Jiangsu Med J, 2019, 45(9):865-870,cover 2. | |
[16] | 宋志远, 张晖, 孔棣. 槐耳颗粒对人胰腺癌细胞Panc-2原位移植模型的干预研究[J]. 吉林医学, 2019, 40(1):3-6. |
SONG Z Y, ZHANG H, KONG D. Interventional researches of Huai' er granula on human pancreatic carcinomas Mini-Panc-2 model[J]. Jilin Med, 2019, 40(1):3-6. | |
[17] |
LIN R, BAO X, WANG H, et al. TRPM2 promotes pancreatic cancer by PKC/MAPK pathway[J]. Cell Death Dis, 2021, 12(6):585.
doi: 10.1038/s41419-021-03856-9 pmid: 34099637 |
[18] | IMRAN M, SALEHI B, SHARIFI-RAD J, et al. Kaempferol: a key emphasis to its anticancer potential[J]. Mo-lecules, 2019, 24(12):2277. |
[19] | LEE J, KIM J H. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro[J]. PLoS One, 2016, 13:11(5):e0155264. |
[20] | WANG Y, DONG B, XUE W, et al. Anticancer effect of radix astragali on cholangiocarcinoma in vitro and its mechanism via network pharmacology[J]. Med Sci Monit, 2020,26:e921162. |
[21] | 陈素贤, 谷泽慧, 马炀斐, 等. 芦丁对人结肠癌SW480细胞凋亡的促进作用及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(2):356-363. |
CHEN S X, GU Z H, MA Y F, et al. Promotion effect of rutin on apoptosis of human colon cancer SW480 cells and its mechanism[J]. J Jilin Univ (Med Ed), 2022, 48(2):356-363. | |
[22] | 万英凤, 王玲兰, 许佑君, 等. 染料木素在乳腺癌MCF-7细胞内的代谢研究[J]. 沈阳药科大学学报, 2010, 27(10):813-820. |
WAN Y F, WANG L L, XU Y J, et al. Metabolism study of genistein in breast cancer MCF-7 cells[J]. J Shenyang Pharmaceutical Univ, 2010, 27(10):813-820. | |
[23] | 程雨晴. 茵栀黄中药成分葡萄糖醛酸代谢筛选及其细胞毒性效应[D]. 湖南: 湖南师范大学, 2017. |
CHENG Y Q. Glucuronic acid metabolism screening of Yinzhihuang traditional Chinese medicine component and its cytotoxic effects[D]. Hunan: Hunan Normal University, 2017. | |
[24] | 卢意, 蔡海波, 谭文松. 甘露糖和葡萄糖醛酸组合促进CIK细胞体外扩增[J]. 中国免疫学杂志, 2019, 35(15):1865-1870. |
LU Y, CAI H B, TAN W S. Mannose and glucuronic acid combination promotes in vitro expansion of CIK cells[J]. Chin J Immunol, 2019, 35(15):1865-1870. | |
[25] |
SAHU N, CHAN E, CHU F, et al. Cotargeting of MEK and PDGFR/STAT3 pathways to treat pancreatic ductal adenocarcinoma[J]. Mol Cancer Ther, 2017, 16(9):1729-1738.
doi: 10.1158/1535-7163.MCT-17-0009 pmid: 28619758 |
[26] | BIRNEY E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4):a041302. |
[27] | 郭强, 黄兴, 夏宁, 等. 全球及中国胰腺癌的流行病学现状及趋势[J]. 中国普外基础与临床杂志, 2025, 32(6):677-686. |
GUO Q, HUANG X, XIA N, et al. Epidemiological status and trends of pancreatic cancer globally and in China[J]. Chin J Bases Clin Gen Surg, 2025, 32(6):677-686. | |
[28] | 陈东宇, 杨晓雨, 樊文龙, 等. 1990-2019年亚洲主要国家胰腺癌疾病负担和归因风险因素及相关预测分析[J]. 中华肿瘤杂志, 2022, 44(9):955-961. |
CHEN D Y, YANG X Y, FAN W L, et al. Disease burden and attributable risk factors of pancreatic cancer and related predictive analysis in major Asian countries from 1990 to 2019[J]. Chin J Oncol, 2022, 44(9):955-961. | |
[29] | 王运玉, 吴柱国. 槐耳抗肿瘤的机制及临床应用[J]. 广东医学院学报, 2007, 25(1):77-79. |
WANG Y Y, WU Z G. Mechanism and clinical application of huaier in tumor treatment[J]. J Guangdong Med Coll, 2007, 25(1):77-79. |
[1] | 杨子云, 姚玮艳. 基于生物信息学构建胰腺癌坏死性凋亡相关lncRNA的预后风险评分模型[J]. 内科理论与实践, 2025, 20(03): 232-241. |
[2] | 张杰, 徐顺, 刘琰, 施燕. 基于网络药理学及转录组学揭示虎黄洗剂促进糖尿病创面愈合机制[J]. 内科理论与实践, 2025, 20(01): 18-23. |
[3] | 徐荆庶, 施建华, 顾海雁, 陈蕾, 钱孝琳, 陆璐, 钮登. 1992—2021年上海市徐汇区户籍居民胰腺癌死亡率趋势分析[J]. 外科理论与实践, 2025, 30(01): 34-40. |
[4] | 雷朝闻尉, 饶佳玲, 周梦雪, 杨虹. 胰腺脂肪沉积的危险因素及相关疾病的研究进展[J]. 诊断学理论与实践, 2025, 24(01): 72-79. |
[5] | 安慧慧, 吴涛, 刘文慧, 田思锐. 91种炎症蛋白水平与急性髓系白血病发病风险相关的孟德尔随机化研究[J]. 诊断学理论与实践, 2024, 23(05): 509-516. |
[6] | 任加强, 武帅, 莫建涛, 周灿灿, 韩亮, 仵正. 磁性氧化铁纳米粒子应用于胰腺癌靶向诊疗的研究进展[J]. 外科理论与实践, 2024, 29(01): 61-66. |
[7] | 王美文, 傅宁稹, 王伟珅, 任新平. 胰十二指肠联合静脉切除重建术后早期血管栓塞的床旁超声诊断及危险因素分析[J]. 外科理论与实践, 2024, 29(01): 54-60. |
[8] | 齐中, 邢颖, 程石. 人工智能技术在当前生物学获益为主的胰腺癌诊疗模式中的发展方向[J]. 外科理论与实践, 2024, 29(01): 5-9. |
[9] | 陆忠晓, 汤杰, 黄文海. 以SEER为基础的列线图构建和胰腺癌病人生存预测[J]. 外科理论与实践, 2024, 29(01): 46-53. |
[10] | 陈佳浩, 姜翀弋. 2023年第2版《NCCN胰腺癌临床实践指南》更新解读[J]. 外科理论与实践, 2024, 29(01): 10-13. |
[11] | 张太平, 翁桂湖, 刘悦泽. 可切除胰腺癌新辅助治疗的研究及指南解读,肯定还是否定?[J]. 外科理论与实践, 2024, 29(01): 1-4. |
[12] | 胡彬蔚, 沈柏用. 胰腺癌新辅助治疗的优势和进展[J]. 外科理论与实践, 2024, 29(01): 74-80. |
[13] | 郭晓倩, 姚玮艳. 透明质酸及其相关因子在胰腺癌方面的研究进展[J]. 内科理论与实践, 2023, 18(04): 305-308. |
[14] | 朱颖, 汤玉茗, 黄佳, 章永平, 姚玮艳. 全反式维A酸可促进肿瘤相关诱导配体对多种胰腺癌细胞的凋亡作用[J]. 内科理论与实践, 2023, 18(03): 171-176. |
[15] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||