外科理论与实践 ›› 2025, Vol. 30 ›› Issue (2): 171-175.doi: 10.16139/j.1007-9610.2025.02.13
收稿日期:
2024-09-05
出版日期:
2025-03-25
发布日期:
2025-07-07
通讯作者:
沈柏用,E-mail: shenby@shsmu.edu.cn
SU Bingwei1,2, SHEN Baiyong2()
Received:
2024-09-05
Online:
2025-03-25
Published:
2025-07-07
摘要:
胰腺导管腺癌(PDAC)是一种高度恶性的消化系统实体肿瘤,能影响机体免疫系统功能。PDAC病人外周循环和肿瘤微环境中的免疫细胞在分布、百分比、功能、活性等特征上均呈现出异常表现。T细胞是参与细胞免疫和发挥抗肿瘤效应的主要淋巴细胞,根据功能和分化抗原不同,可以分为CD4+、CD8+、CD4+ CD25+等亚群。PDAC病人循环免疫及肿瘤微环境中T细胞亚群水平的异常可能是促进肿瘤发生发展的重要因素。
中图分类号:
苏秉蔚 综述, 沈柏用 审校. 胰腺导管腺癌病人循环免疫及肿瘤微环境中T细胞亚群异常[J]. 外科理论与实践, 2025, 30(2): 171-175.
SU Bingwei, SHEN Baiyong. Abnormalities in T cell subsets in the circulating immunity and tumor microenvironment in patients with pancreatic ductal adenocarcinoma[J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 171-175.
[1] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. |
[2] | 国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(5):1006-1015. |
General Office of the National Health Commission of China. Standard for diagnosis and treatment of pancreatic cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(5):1006-1015. | |
[3] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. |
[4] | GORAL V. Pancreatic cancer: pathogenesis and diagnosis[J]. Asian Pac J Cancer Prev, 2015, 16(14):5619-5624. |
[5] | BALACHANDRAN V P, ŁUKSZA M, ZHAO J N, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer[J]. Nature, 2017, 551(7681):512-516. |
[6] | YING H, YAO W. The prospects of immunotherapy in pancreatic cancer[M]// Pancreat Cancer Multidiscip Approach. Cham:Springer,2022:269-281. |
[7] | AJINA R, WEINER L M. T-Cell immunity in pancreatic cancer[J]. Pancreas, 2020, 49(8):1014-1023. |
[8] |
DALEY D, ZAMBIRINIS C P, SEIFERT L, et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation[J]. Cell, 2016, 166(6):1485-1499.e15.
doi: S0092-8674(16)30996-5 pmid: 27569912 |
[9] |
LAFONT V, SANCHEZ F, LAPREVOTTE E, et al. Plasticity of γδ T cells: impact on the anti-tumor response[J]. Front Immunol,2014, 5:622
doi: 10.3389/fimmu.2014.00622 pmid: 25538706 |
[10] | MCALLISTER F, BAILEY J M, ALSINA J, et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia[J]. Cancer cell, 2014, 25(5):621-637. |
[11] | LI J, MORESCO P, FEARON D T. Intratumoral NKT cell accumulation promotes antitumor immunity in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2024, 121(29):e2403917121. |
[12] | JANAKIRAM N B, MOHAMMED A, BRYANT T, et al. Loss of natural killer T cells promotes pancreatic cancer in LSL-KrasG12D/+ mice[J]. Immunology, 2017, 152(1):36-51. |
[13] | XU Y F, LU Y, CHENG H, et al. Abnormal distribution of peripheral lymphocyte subsets induced by PDAC modulates overall survival[J]. Pancreatology, 2014, 14(4):295-301. |
[14] |
LIYANAGE U K, MOORE T T, JOO H G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma[J]. J Immunol, 2002, 169(5):2756-2761.
doi: 10.4049/jimmunol.169.5.2756 pmid: 12193750 |
[15] | O'NEILL R E, CAO X. Co-stimulatory and co-inhibitory pathways in cancer immunotherapy[J]. Adv Cancer Res, 2019,143:145-194. |
[16] |
LIU C, CHENG H, LUO G, et al. Circulating regulatory T cell subsets predict overall survival of patients with unresectable pancreatic cancer[J]. Int J Oncol, 2017, 51(2):686-694.
doi: 10.3892/ijo.2017.4032 pmid: 28714519 |
[17] | YAMAMOTO T, YANAGIMOTO H, SATOI S, et al. Circulating CD4+CD25+ regulatory T cells in patients with pancreatic cancer[J]. Pancreas, 2012, 41(3):409-415. |
[18] |
STROMNES I M, HULBERT A, PIERCE R H, et al. T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma[J]. Cancer Immunol Res, 2017, 5(11):978-991.
doi: 10.1158/2326-6066.CIR-16-0322 pmid: 29066497 |
[19] | BAILEY P, CHANG D K, NONES K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer[J]. Nature, 2016, 531(7592):47-52. |
[20] |
PENG J, SUN B F, CHEN C Y, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma[J]. Cell Res, 2019, 29(9):725-738.
doi: 10.1038/s41422-019-0195-y pmid: 31273297 |
[21] |
BALLI D, RECH A J, STANGER B Z, et al. Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer[J]. Clin Cancer Res, 2017, 23(12):3129-3138.
doi: 10.1158/1078-0432.CCR-16-2128 pmid: 28007776 |
[22] | RYSCHICH E, NÖTZEL T, HINZ U, et al. Control of T-cell-mediated immune response by HLA class Ⅰ in human pancreatic carcinoma[J]. Clin Cancer Res, 2005, 11(2 Pt 1):498-504. |
[23] | TANG Y, XU X, GUO S, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma[J]. PLoS one, 2014, 9(3):e91551. |
[24] |
CARSTENS J L, CORREA DE SAMPAIO P, YANG D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer[J]. Nat Commun,2017, 8:15095
doi: 10.1038/ncomms15095 pmid: 28447602 |
[25] | YOUSUF S, QIU M, VOITH VON VOITHENBERG L, et al. Spatially resolved multi-omics single-cell analyses inform mechanisms of immune dysfunction in pancreatic cancer[J]. Gastroenterology, 2023, 165(4):891-908.e14. |
[26] |
LIU W, PUTNAM A L, XU-YU Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells[J]. J Exp Med, 2006, 203(7):1701-1711.
doi: 10.1084/jem.20060772 pmid: 16818678 |
[27] | SAHAI E, ASTSATUROV I, CUKIERMAN E. A framework for advancing our understanding of cancer-associa-ted fibroblasts[J]. Nat Rev Cancer, 2020, 20(3):174-186. |
[28] | ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3):579-596. |
[29] | JENKINS L, JUNGWIRTH U, AVGUSTINOVA A. Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to immune-checkpoint blockade[J]. Cancer Res, 2022, 82(16):2904-2917. |
[30] |
TAN M C, GOEDEGEBUURE P S, BELT B A, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer[J]. J Immunol, 2009, 182(3):1746-1755.
doi: 10.4049/jimmunol.182.3.1746 pmid: 19155524 |
[31] | PAN Y, LU F, FEI Q, et al. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancrea-tic cancer[J]. J Hematol Oncol, 2019, 27, 12(1):124. |
[32] | POSCHKE I, FARYNA M, BERGMANN F, et al. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma[J]. Oncoimmunology, 2016, 5(12):e1240859. |
[33] |
ZHANG Y, LAZARUS J, STEELE N G, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis[J]. Cancer Discov, 2020, 10(3):422-439.
doi: 10.1158/2159-8290.CD-19-0958 pmid: 31911451 |
[34] |
DAS S, SHAPIRO B. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer[J]. Cancer Res, 2020, 80(5):1088-1101.
doi: 10.1158/0008-5472.CAN-19-2080 pmid: 31915130 |
[35] |
LEINWAND J, MILLER G. Regulation and modulation of antitumor immunity in pancreatic cancer[J]. Nat Immunol, 2020, 21(10):1152-1159.
doi: 10.1038/s41590-020-0761-y pmid: 32807942 |
[36] | FAN J Q, WANG M F, CHEN H L, et al. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2020, 19(1):32. |
[37] | SHA H, TONG F, NI J, et al. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase Ⅱ trial[J]. Signal Transduct Target Ther, 2024, 9(1):143. |
[38] | PARIKH A R, SZABOLCS A, ALLEN J N, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase Ⅱ trial[J]. Nat Cancer, 2021, 2(11):1124-1135. |
[39] |
ZHANG H, XU W, ZHU H, et al. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: combining radiotherapy and metabolic targeting therapy[J]. J Cancer, 2024, 15(7):2003-2023.
doi: 10.7150/jca.92502 pmid: 38434964 |
[40] |
PANT S, WAINBERG Z A, WEEKES C D, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial[J]. Nat Med, 2024, 30(2):531-542.
doi: 10.1038/s41591-023-02760-3 pmid: 38195752 |
[41] | ROJAS L A, SETHNA Z, SOARES K C, et al. Persona-lized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963):144-150. |
[42] | SETHNA Z, GUASP P, REICHE C, et al. RNA neoantigen vaccines prime long-lived CD8(+) T cells in pancreatic cancer[J]. Nature, 2025, 639(8056):1042-1051. |
[43] |
LOPEZ J, POWLES T, BRAITEH F, et al. Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial[J]. Nat Med, 2025, 31(1):152-164.
doi: 10.1038/s41591-024-03334-7 pmid: 39762422 |
[44] |
MUSHER B L, ROWINSKY E K, SMAGLO B G, et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study[J]. Lancet Oncol, 2024, 25(4):488-500.
doi: 10.1016/S1470-2045(24)00079-2 pmid: 38547893 |
[1] | 金佳敏, 赖柏翰, 顾婕妤, 等. 先天性巨痣自发消退患者的单细胞测序分析[J]. 组织工程与重建外科杂志, 2025, 21(2): 162-. |
[2] | 冯国伟, 黄新韵, 孟宏平, 江旭峰, 陈克敏, 林晓珠. 18F-氟脱氧葡萄糖正电子发射断层扫描/磁共振成像(18F-FDG PET/MRI)在诊断胰腺癌术后复发中的价值[J]. 诊断学理论与实践, 2024, 23(05): 517-523. |
[3] | 陈芳倩, 冯雯卿, 赵敬坤, 宗雅萍, 陆爱国. T1期结肠直肠癌淋巴结转移相关危险因素的研究进展[J]. 外科理论与实践, 2024, 29(04): 358-364. |
[4] | 赵一鸣, 吴棕, 王鲁. 肝脏微环境细胞对结肠直肠癌肝转移的作用[J]. 外科理论与实践, 2024, 29(02): 126-131. |
[5] | 卢一鸣, 熊建平, 田艳涛. 晚期胃癌转化治疗的发展现状与研究前景[J]. 外科理论与实践, 2023, 28(01): 17-23. |
[6] | 谢吻, 梁怀予, 董磊, 袁菲, 王朝夫, 郭滟. 胰腺导管腺癌重要驱动基因突变与临床病理特征、预后间相关性的分析[J]. 诊断学理论与实践, 2022, 21(05): 581-587. |
[7] | 顾炫, 柳俊. 超声筛查鉴别胰腺实性假乳头状瘤与胰腺导管腺癌的研究分析[J]. 诊断学理论与实践, 2022, 21(04): 504-508. |
[8] | 管涛(综述), 张倜, 王鲁(审校). 肝细胞癌肺转移的潜在机制和治疗进展[J]. 外科理论与实践, 2022, 27(02): 180-184. |
[9] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[10] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[11] | 李凡露, 吴志翀, 詹茜, 沈柏用. CA19-9 及CA125评估胰腺导管腺癌的可切除性[J]. 外科理论与实践, 2019, 24(02): 163-167. |
[12] | 陈平, 俞骁珺, 谷雷雷, 张梦茵, 朱时燕, 吴云林,. 信号转导与转录激活蛋白活化抑制蛋白1的表达与胃癌微环境转移结构关系及预后[J]. 内科理论与实践, 2017, 12(06): 365-370. |
[13] | 周奕然, 沈柏用,. CA 19-9中度升高提示胰腺导管腺癌病人根治性切除术后预后不佳[J]. 外科理论与实践, 2016, 21(06): 512-516. |
[14] | 阮祥, 方圆, 沈柏用,. 髓源性免疫抑制细胞在胰腺癌中的研究进展[J]. 外科理论与实践, 2015, 20(04): 352-355. |
[15] | 李媛媛, 张舒, 曹波, 陆晓晔, 刘黎, 陈杰, 归茜, 徐欣晖, 吕利雄, 朱长清,. 几种感染性疾病中外周血T淋巴细胞亚群变化的检测及其临床意义研究[J]. 诊断学理论与实践, 2015, 14(04): 363-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||