诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (04): 414-419.doi: 10.16150/j.1671-2870.2020.04.017
杨翠萍1, 杨晓金2, 杨燕萍3, 张梦茵1, 谢玲1, 俞骁珺1, 蔡波尔1, 陈登宇4, 陈平1(), 吴云林1()
收稿日期:
2019-07-09
出版日期:
2020-08-25
发布日期:
2022-07-15
通讯作者:
陈平,吴云林
E-mail:chenping714@aliyun.com;wuyunlin1951@163.com
YANG Cuiping1, YANG Xiaojin2, YANG Yanpin3, ZHANG Mengyin1, XIE Ling1, YU Xiaojun1, CAI Boer1, CHEN Dengyu4, CHEN Ping1(), WU Yunlin1()
Received:
2019-07-09
Online:
2020-08-25
Published:
2022-07-15
Contact:
CHEN Ping,WU Yunlin
E-mail:chenping714@aliyun.com;wuyunlin1951@163.com
摘要:
目的: 采用RNA靶向干扰技术,研究人胃癌细胞BGC823中微小RNA(microRNA, miRNA, miR)-200c的靶点锌指E盒增强子结合蛋白2(zinc finger E-box enhancer binding protein 2, ZEB2)基因的表达情况,并检测相关的波形蛋白基因表达情况,观察miR-200c对胃癌BGC823细胞功能的影响。方法: 构建ZEB2基因表达的干扰质粒shZEB2,用Lipofectamine 2000转染胃癌BGC823细胞,用G418筛选稳定转染细胞株,进行实时定量聚合酶链反应(polymerase chain reaction,PCR)检测人BCG823细胞中ZEB2 mRNA、miR-200c及波形蛋白基因的表达水平,并用蛋白印迹法检测ZEB2蛋白、波形蛋白表达水平,噻唑蓝(methylthiazolyldiphenyl-tetrazolium bromide, MTT)法检测细胞增殖能力;Transwell小室检测细胞侵袭能力,划痕实验检测细胞迁移能力。结果: 干扰ZEB2分子表达后,miR-200c表达水平增高,而BGC823细胞的增殖、迁移及侵袭能力明显下降。结论: ZEB2是miR-200c的检测靶点,干扰ZEB2后,胃癌细胞BGC823的增殖、迁移及侵袭能力明显降低。
中图分类号:
杨翠萍, 杨晓金, 杨燕萍, 张梦茵, 谢玲, 俞骁珺, 蔡波尔, 陈登宇, 陈平, 吴云林. 人胃癌细胞BGC823中miR-200c靶基因产物波形蛋白的检测及功能研究[J]. 诊断学理论与实践, 2020, 19(04): 414-419.
YANG Cuiping, YANG Xiaojin, YANG Yanpin, ZHANG Mengyin, XIE Ling, YU Xiaojun, CAI Boer, CHEN Dengyu, CHEN Ping, WU Yunlin. Functional study and detection of vimentin produced by miR-200c target gene in human gastric cancer BGC823 cells[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 414-419.
[1] |
Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma[J]. Cancer Lett, 2011, 305(2):228-238.
doi: 10.1016/j.canlet.2010.07.014 URL |
[2] |
Yang L, Zheng R, Wang N, et al. Incidence and mortality of stomach cancer in China[J]. Chin J Cancer Res, 2018, 30(3):291-298.
doi: 10.21147/j.issn.1000-9604.2018.03.01 URL |
[3] | Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors[J]. Cancer Res, 2012, 72(5):1126-1136. |
[4] |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376 |
[5] |
Mani SA, Guo WJ, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
doi: 10.1016/j.cell.2008.03.027 URL |
[6] |
Ishibashi M, Kogo R, Shibata K, et al. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma[J]. Oncol Rep, 2013, 29(3):946-950.
doi: 10.3892/or.2012.2219 pmid: 23292722 |
[7] |
Wang J, Chen D, He X, et al. Downregulated lincRNA HOTAIR expression in ovarian cancer stem cells decreases its tumorgeniesis and metastasis by inhibiting epithelial-mesenchymal transition[J]. Cancer Cell Int, 2015, 15:24.
doi: 10.1186/s12935-015-0174-4 URL |
[8] |
Christoffersen NR, Silahtaroglu A, Orom UA, et al. miR-200b mediates post-transcriptional repression of ZFHX1B[J]. RNA, 2007, 13(8):1172-1178.
pmid: 17585049 |
[9] |
Hurteau GJ, Carlson JA, Spivack SD, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin[J]. Cancer Res, 2007, 67(17):7972-7976.
doi: 10.1158/0008-5472.CAN-07-1058 URL |
[10] |
Park SM, Gaur AB, Lengyel E, et al. The miR200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev, 2008, 22(7):894-907.
doi: 10.1101/gad.1640608 URL |
[11] |
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008, 10(5):593-601.
doi: 10.1038/ncb1722 pmid: 18376396 |
[12] |
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem, 2008, 283(22):14910-14914.
doi: 10.1074/jbc.C800074200 pmid: 18411277 |
[13] |
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer?[J] EMBO Rep, 2010, 11(9):670-677.
doi: 10.1038/embor.2010.117 pmid: 20706219 |
[14] |
Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6):582-589.
doi: 10.1038/embor.2008.74 URL |
[15] |
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1- SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition[J]. Cancer Res, 2008, 68(19):7846-7854.
doi: 10.1158/0008-5472.CAN-08-1942 URL |
[16] |
Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes Dev, 2009, 23(18):2152-2165.
doi: 10.1101/gad.1820109 URL |
[17] |
Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization[J]. Nat Med, 2011, 17(9):1101-1108.
doi: 10.1038/nm.2401 pmid: 21822286 |
[18] | Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4 Suppl):21. |
[19] |
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer[J]. Int J Cancer, 2013, 132(4):745-754.
doi: 10.1002/ijc.27708 URL |
[20] |
Liu S, Tetzlaff MT, Cui R, et al. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1[J]. Am J Pathol, 2012, 181(5):1823-1835.
doi: 10.1016/j.ajpath.2012.07.009 URL |
[21] |
Okugawa Y, Toiyama Y, Hur K, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis[J]. Carcinogenesis, 2014, 35(12):2731-2739.
doi: 10.1093/carcin/bgu200 URL |
[22] |
Kurashige J, Mima K, Sawada G, et al. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer[J]. Carcinogenesis, 2015, 36(1):133-141.
doi: 10.1093/carcin/bgu232 pmid: 25411357 |
[23] |
Sundararajan V, Gengenbacher N, Stemmler MP, et al. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5[J]. Oncotarget, 2015, 6(29):27083-27096.
doi: 10.18632/oncotarget.4807 pmid: 26334100 |
[24] | Fanelli MF, Chinen LT Sr, Begnami MD, et al. The influence of CD44v6, TGF-α, COX-2, MMP-7, and MMP-9 on clinical evolution of patients with gastric cancer[J]. J Clin Oncol, 2011, 29(4_suppl):21. |
[25] |
Hur H, Kim JY, Kim YB, et al. Effect of Helicobacter pylori on prognosis of curatively resected gastric cancers in a population with high prevalence: short-term results of a prospective study[J]. J Clin Oncol, 2011, 29(4 Suppl):152b.
doi: 10.1200/jco.2011.29.4_suppl.152b URL |
[26] | Corso G, Marrelli D, Pascale V, et al. Oncogenic mutations in MAPK cascade as novel molecular biomarkers for treatment of gastric cancer patients with EGFR inhibitors[J]. J Clin Oncol, 2011, 29(4_suppl):39. |
[27] |
Noormohammad M, Sadeghi S, Tabatabaeian H, et al. Upregulation of miR-222 in both Helicobacter pylori-infected and noninfected gastric cancer patients[J]. J Genet, 2016, 95(4):991-995.
pmid: 27994199 |
[28] | Shamsdin SA, Alborzi A, Rasouli M, et al. The importance of TH22 and TC22 cells in the pathogenesis of Helicobacter pylori-associated gastric diseases[J/OL]. [2016-12-19]. https://pubmed.ncbi.nlm.nih.gov/27990709/. |
[1] | 陈平, 徐莹, 吴云林. 消化内镜在早期胃癌诊断中的应用进展[J]. 诊断学理论与实践, 2022, 21(05): 551-554. |
[2] | 王亚雷. 重视胃癌高危人群的内镜精查[J]. 诊断学理论与实践, 2022, 21(05): 555-559. |
[3] | 马乾宸, 张本炎, 芮炜玮, 王婷, 罗方秀, 王朝夫, 袁菲. 中国3 071例胃癌病理分型分析[J]. 诊断学理论与实践, 2022, 21(05): 560-566. |
[4] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[5] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[6] | 李娜娜, 齐涛, 朱黎明. 血清胃蛋白酶原、胃泌素17和幽门螺杆菌IgG抗体在胃部疾病初筛中的临床价值[J]. 诊断学理论与实践, 2022, 21(04): 509-513. |
[7] | 姜江, 曾志坤, 石博文, 潘召城, 颜凌, 王宇杰, 张欢. 玻璃动力学分析方法研究胃癌细胞运动学特点[J]. 诊断学理论与实践, 2019, 18(06): 645-648. |
[8] | 周磊, 王虹, 徐慧明, 叶涛, 高建萍, 孙一骏, 谢军. 血清胃蛋白酶原对上海中心城区胃癌高危人群筛查慢性萎缩性胃炎的潜在价值[J]. 诊断学理论与实践, 2019, 18(05): 570-574. |
[9] | 王兰, 张欢, 葛颖倩, 陆静, 崔征, 颜凌, 潘自来. 胃癌肝转移病灶的人工智能辅助半自动分割软件的临床应用评估[J]. 诊断学理论与实践, 2019, 18(05): 515-520. |
[10] | 张华, 李永兴, 乐嫣, 王文毓, 项明洁. 血清骨桥蛋白和组织多肽特异抗原联合检测在胃癌辅助诊断中的临床应用[J]. 诊断学理论与实践, 2018, 17(04): 428-432. |
[11] | 武新洋, 张欢, 潘自来, 谭晶文, 杲霄源. 双源CT对原发性胃淋巴瘤和进展期胃癌的鉴别诊断价值[J]. 诊断学理论与实践, 2018, 17(01): 60-65. |
[12] | 乔长婷, 李蕾, 邬安妮, 袁菲. 进展期胃癌人表皮生长因子受体2蛋白表达与临床病理学特征的关系[J]. 诊断学理论与实践, 2017, 16(02): 166-170. |
[13] | 赵建溪, 任刚, 蔡嵘, 郭辰, 陈健, 李华莉,. 多排螺旋CT诊断早期胃癌淋巴结转移的准确性研究[J]. 诊断学理论与实践, 2016, 15(02): 174-179. |
[14] | 贺文广, 任刚,. 胃癌淋巴结转移规律及淋巴结清扫范围的判定[J]. 诊断学理论与实践, 2016, 15(01): 65-68. |
[15] | 于颖彦,. 亚洲癌症研究组新近提出胃癌分子分型的浅析[J]. 诊断学理论与实践, 2015, 14(06): 511-513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||