诊断学理论与实践 ›› 2017, Vol. 16 ›› Issue (02): 141-146.doi: 10.16150/j.1671-2870.2017.02.004
张陈诚a, 王滔a, 贺娜英b, 李殿友a, 孙伯民a
收稿日期:
2017-03-31
出版日期:
2017-04-25
发布日期:
2017-04-25
Received:
2017-03-31
Online:
2017-04-25
Published:
2017-04-25
中图分类号:
张陈诚, 王滔, 贺娜英, 李殿友, 孙伯民. 脑深部电刺激术前影像学定位和术后随访的影像学评价[J]. 诊断学理论与实践, 2017, 16(02): 141-146.
[1] Neumaier F, Paterno M, Alpdogan S, et al.Surgical approaches in psychiatry: A survey of the world literature on psychosurgery[J]. World Neurosurg,2017,97:603-634. [2] Krack P, Martinez-Fernandez R, Del Alamo M, et al.Current applications and limitations of surgical treatments for movement disorders[J]. Mov Disord,2017,32(1):36-52. [3] Vitek JL, Lyons KE, Bakay R, et al.Standard guidelines for publication of deep brain stimulation studies in Parkinson's disease(Guide4DBS-PD)[J]. Mov Disord,2010,25(11):1530-1537. [4] Henderson JM, Tkach J, Phillips M, et al.Permanent neurological deficit related to magnetic resonance ima-ging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report[J]. Neurosurgery, 2005,57(5):E1063. [5] Burchiel KJ, Nguyen TT, Coombs BD, et al.MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames[J]. Stereotact Funct Neu-rosurg,1996,66(1-3):123-136. [6] Spiegel J, Fuss G, Backens M, et al.Transient dystonia following magnetic resonance imaging in a patient with deep brain stimulation electrodes for the treatment of Parkinson disease. Case report[J]. J Neurosurg,2003,99(4):772-774. [7] Littlechild P, Varma TR, Eldridge PR, et al.Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates[J]. Stereotact Funct Neurosurg, 2003,80(1-4):82-87. [8] Pinsker MO, Herzog J, Falk D, et al.Accuracy and distortion of deep brain stimulation electrodes on postope-rative MRI and CT[J]. Zentralbl Neurochir,2008,69(3):144-147. [9] Israel Z, Bergman H.Location, location, location: Validating the position of deep brain stimulation electrodes[J]. Mov Disord,2016,31(3):259. [10] Ashkan K, Blomstedt P, Zrinzo L, et al.Variability of the subthalamic nucleus: the case for direct MRI guided targeting[J]. Br J Neurosurg, 2007,21(2):197-200. [11] Tsai ST, Lin SH, Lin SZ, et al.Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson's disease[J]. Neurosurgery,2007,61(5):E1024-E1029. [12] Mallet L, Schüpbach M, N'Diaye K, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior[J]. Proc Natl Acad Sci U S A,2007,104(25):10661-10666. [13] Guehl D, Edwards R, Cuny E, et al.Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease[J]. J Neurosurg,2007, 106(1):101-110. [14] Brunenberg EJ, Platel B, Hofman PA, et al.Magnetic resonance imaging techniques for visualization of the subthalamic nucleus[J]. J Neurosurg,2011,115(5):971-984. [15] Heo YJ, Kim SJ, Kim HS, et al.Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease[J]. Neuroradiology,2015,57(9):929-935. [16] Longhi M, Ricciardi G, Tommasi G, et al.The role of 3T magnetic resonance imaging for targeting the human subthalamic nucleus in deep brain stimulation for parkinson disease[J]. J Neurol Surg A Cent Eur Neurosurg,2015 ,76(3):181-189. [17] Nagahama H, Suzuki K, Shonai T, et al.Comparison of magnetic resonance imaging sequences for depicting the subthalamic nucleus for deep brain stimulation[J]. Radiol Phys Technol,2015,8(1):30-35. [18] Bot M, Bour L, de Bie RM, et al. Can We rely on susceptibility-weighted imaging for subthalamic nucleus identification in deep brain stimulation surgery?[J]. Neurosurgery,2016,78(3):353-360. [19] Lee JY, Kim JW, Lee JY, et al.Is MRI a reliable tool to locate the electrode after deep brain stimulation surgery? Comparison study of CT and MRI for the localization of electrodes after DBS[J]. Acta Neurochir (Wien),2010,52(12):2029-2036. [20] Holtzheimer PE 3rd, Roberts DW, Darcey TM. Magnetic resonance imaging [21] Hariz MI, Bergenheim AT.A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis[J]. J Neurosurg,1990,73(4):565-571. [22] Tisch S, Zrinzo L, Limousin P, et al.Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia[J]. J Neurol Neurosurg Psychiatry,2007,78(12):1314-1319. [23] Drayer BP.Basal ganglia: significance of signal hypointensity on T2-weighted MR images[J]. Radiology, 1989,173(2):311-312. [24] Dormont D, Ricciardi KG, Tandé D, et al.Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data[J]. Am J Neuroradiol,2004 ,25(9):1516-1523. [25] Starr PA, Vitek JL, DeLong M, et al. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus[J]. Neurosurgery,1999,44(2):303-313. [26] Guo T, Finnis KW, Deoni SCL, et al.Comparison of different targeting methods for subthalamic nucleus deep brain stimulation[A]. See: Medical Image Computing and Computer-Assisted Intervention - Miccai 2006, Pt 1[M]. Springer-Verlag,2006,9(Pt 1):768-775. [27] Gringel T, Schulz-Schaeffer W, Elolf E, et al.Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time[J]. J Magn Reson Imaging,2009,29(6):1285-1292. [28] Duyn JH, van Gelderen P, Li TQ, et al. High-field MRI of brain cortical substructure based on signal phase[J]. Proc Natl Acad Sci U S A,2007,104(28):11796-11801. [29] Haacke EM, Xu Y, Cheng YC, et al.Susceptibility weighted imaging (SWI)[J]. Magn Reson Med,2004,52(3):612-618. [30] Nölte IS, Gerigk L, Al-Zghloul M, et al.Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla[J]. Acta Neurochir (Wien),2012 ,154(3):481-494. [31] Nowacki A, Fiechter M, Fichtner J, et al.Using MDEFT MRI sequences to target the GPi in DBS surgery[J]. PLoS One,2015,10(9):e0137868. [32] Spiegelmann R, Nissim O, Daniels D, et al.Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI[J]. Stereotact Funct Neurosurg,2006,84(1):19-23. [33] Hirabayashi H, Tengvar M, Hariz MI.Stereotactic ima-ging of the pallidal target[J]. Mov Disord,2002,17(Suppl 3):S130-S134. [34] Sandvik U, Koskinen LO, Lundquist A, et al. Thalamic and subthalamic deep brain stimulation for essential tremor: where is the optimal target?[J]. Neurosurgery, 2012 Apr;70(4):840-845. [35] Vassal F, Coste J, Derost P, et al.Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence[J]. Brain Stimul,2012, 5(4): 625-633. [36] Yang C, Wang Q, Wu W, et al.Thalamic segmentation based on improved fuzzy connectedness in structural MRI[J]. Comput Biol Med,2015,66:222-234. [37] Greenberg BD, Gabriels LA, Malone DA Jr, et al.Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience[J]. Mol Psychiatry,2010,15(1):64-79. [38] Medtronic. Mri guidelines for medtronic deep brain stimu-lation systems[R]. 2015. [39] Serano P, Angelone LM, Katnani H, et al.A novel brain stimulation technology provides compatibility with MRI[J]. Sci Rep,2015,5:9805. [40] McElcheran CE, Yang B, Anderson KJ, et al. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging[J]. PLoS One,2015,10(8):e0134379. [41] Kahan J, Papadaki A, White M, et al.The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices[J]. PLoS One,2015,10(6):e0129077. [42] Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage,2012 Sep;62(3):1593-1599. [43] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med,2010,63(1):194-206. [44] Shmueli K, de Zwart JA, van Gelderen P, et al. Magnetic susceptibility mapping of brain tissue [45] Schäfer A, Forstmann BU, Neumann J, et al.Direct visua-lization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping[J]. Hum Brain Mapp,2012,33(12):2831-2842. [46] Liu T, Eskreis-Winkler S, Schweitzer AD, et al.Improved subthalamic nucleus depiction with quantitative susceptibility mapping[J]. Radiology,2013,269(1):216-223. [47] Duchin Y, Abosch A, Yacoub E, et al.Feasibility of using ultra-high field (7 T) MRI for clinical surgical targe-ting[J]. PLoS One,2012,7(5):e37328. [48] Kerl HU, Gerigk L, Pechlivanis I, et al.The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation[J]. Acta Neurochir (Wien),2012,154(11):2051-2062. [49] Dunn JF, Tuor UI, Kmech J, et al.Functional brain mapping at 9.4T using a new MRI-compatible electrode chronically implanted in rats[J]. Magn Reson Med,2009, 61(1):222-228. [50] Al-Helli O, Thomas DL, Massey L, et al.Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation[J]. Acta Neurochir (Wien),2015,157(12):2143-2147. [51] Walter U, Kanowski M, Kaufmann J, et al.Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study[J]. Neuroimage,2008, 40(2):551-558. [52] Walter U, Wolters A, Wittstock M, et al.Deep brain stimulation in dystonia: sonographic monitoring of electrode placement into the globus pallidus internus[J]. Mov Disord,2009,24(10):1538-1541. [53] Walter U, Müller JU, Rösche J, et al.Magnetic resonance-transcranial ultrasound fusion imaging: A novel tool for brain electrode location[J]. Mov Disord,2016,31(3):302-309. [54] Starr PA, Christine CW, Theodosopoulos PV, et al.Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations[J]. J Neurosurg,2002,97(2):370-387. |
[1] | 黄娟, 朱晓雷, 李晓, 陈克敏, 严福华, 徐学勤. 血氧水平依赖磁共振成像评估早期慢性肾病肾缺氧的研究[J]. 诊断学理论与实践, 2022, 21(03): 385-389. |
[2] | 朱乃懿, 姜奕歆, 柴丽, 柴维敏. 磁共振对超声阴性而乳腺X线检出BI-RADS4类以上钙化灶的诊断价值分析[J]. 诊断学理论与实践, 2021, 20(05): 439-444. |
[3] | 张雪坤, 李彦, 严福华, 赵洪飞, 宋琦. 基于光梭成像的新型加速技术在颅脑MRI中的应用价值研究[J]. 诊断学理论与实践, 2021, 20(04): 378-383. |
[4] | 孙甜甜, 叶宝英, 杨钰, 牛建梅. 彩色多普勒超声与磁共振成像在凶险型前置胎盘及合并胎盘植入产前诊断中的应用及漏诊分析[J]. 诊断学理论与实践, 2021, 20(02): 173-177. |
[5] | 曹琪琪, 秦乐, 周慧娟, 杨之涛, 苏文婷, 杨文洁, 程增辉, 陆勇, 严福华, 潘自来. 新型冠状病毒(2019-nCoV)肺炎的CT征象分析[J]. 诊断学理论与实践, 2020, 19(1): 16-19. |
[6] | 吴霜, 解骞, 管雪妮, 张素芳, 高信芳, 梁宗辉. 磁共振体素内不相干运动扩散加权成像诊断活动期克罗恩病的价值及效能分析[J]. 诊断学理论与实践, 2020, 19(02): 157-161. |
[7] | 王兰, 张欢, 葛颖倩, 陆静, 崔征, 颜凌, 潘自来. 胃癌肝转移病灶的人工智能辅助半自动分割软件的临床应用评估[J]. 诊断学理论与实践, 2019, 18(05): 515-520. |
[8] | 曹烨, 刘晓晟, 葛晓乾, 周斌. 运用动态增强磁共振成像评估颈动脉粥样斑块稳定性的初步研究[J]. 诊断学理论与实践, 2019, 18(04): 436-441. |
[9] | 朱晓雷, 陈璐, 陆文丽, 刘燕, 严福华, 王伟, 董治亚. 474例中枢性性早熟女童不同年龄段垂体MRI影像学异常比例分析[J]. 诊断学理论与实践, 2019, 18(03): 286-290. |
[10] | 韩宝惠, 沈胤晨. 我国肺癌筛查现状与展望[J]. 诊断学理论与实践, 2018, 17(05): 487-489. |
[11] | 李云峰, 江泓, 李宁, 孙青芳. 核磁共振成像诊断三叉神经痛的价值分析与研究[J]. 诊断学理论与实践, 2018, 17(05): 562-565. |
[12] | 许晶晶, 张敏鸣. 人工智能机器学习方法在阿尔茨海默病中的应用现状[J]. 诊断学理论与实践, 2018, 17(04): 466-470. |
[13] | 黎鑫乐, 柴维敏, 朱樱. 乳腺乳头状肿瘤的影像学诊断进展[J]. 诊断学理论与实践, 2018, 17(02): 225-230. |
[14] | 赵华丽, 徐文鹏, 梁宗辉. 创伤性臂丛神经损伤的磁共振成像3D-FIESTA-C、IDEAL序列特征及诊断价值[J]. 诊断学理论与实践, 2018, 17(02): 197-201. |
[15] | 叶岚, 张欢, 钱朝霞. 磁共振在异位妊娠中的影像表现及临床价值[J]. 诊断学理论与实践, 2017, 16(06): 650-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||