Journal of Diagnostics Concepts & Practice ›› 2019, Vol. 18 ›› Issue (06): 711-714.doi: 10.16150/j.1671-2870.2019.06.021
• Review article • Previous Articles Next Articles
Received:
2019-05-23
Online:
2019-12-25
Published:
2019-12-25
CLC Number:
[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
doi: 10.3322/caac.21262 URL |
[2] | Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-e567. |
[3] |
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
doi: 10.1016/j.mri.2012.06.010 URL |
[4] |
Mazurowski MA. Radiogenomics: what it is and why it is important[J]. J Am Coll Radiol, 2015, 12(8): 862-866.
doi: 10.1016/j.jacr.2015.04.019 pmid: 26250979 |
[5] |
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics[J]. Phys Med, 2017, 38:122-139.
doi: 10.1016/j.ejmp.2017.05.071 URL |
[6] |
Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer[J]. Sci Rep, 2013, 3:3529.
doi: 10.1038/srep03529 pmid: 24346241 |
[7] |
Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1):14-21.
doi: 10.1007/s11604-013-0264-y pmid: 24248771 |
[8] |
Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4):1537-1549.
doi: 10.1002/mp.12820 URL |
[9] |
Balagurunathan Y, Schabath MB, Wang H, et al. Quantitative imaging features improve discrimination of malignancy in pulmonary nodules[J]. Sci Rep, 2019, 9(1):8528.
doi: 10.1038/s41598-019-44562-z pmid: 31189944 |
[10] |
Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diag-nostic factor for histologic subtype classification of non-small cell lung cancer[J]. Eur Radiol, 2018, 28(7):2772-2778.
doi: 10.1007/s00330-017-5221-1 URL |
[11] | Bera K, Velcheti V, Madabhushi A. Novel quantitative imaging for predicting response to therapy: Techniques and clinical applications[J]. Am Soc Clin Oncol Educ Book, 2018, 38:1008-1018. |
[12] |
Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7:41674.
doi: 10.1038/srep41674 URL |
[13] |
Cheng Z, Shan F, Yang Y, et al. CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis[J] .BMC Med Imaging, 2017, 17(1):5.
doi: 10.1186/s12880-016-0175-3 URL |
[14] |
Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6):443-450.
doi: S0009-9260(17)30043-0 pmid: 28258739 |
[15] |
Zhao J, Dinkel J, Warth A,et al. CT characteristics in pulmonary adenocarcinoma with epidermal growth factor receptor mutation[J]. PLoS One, 2017, 12(9):e0182741.
doi: 10.1371/journal.pone.0182741 URL |
[16] |
Shi Z, Zheng X, Shi R, et al. Radiological and clinical features associated with epidermal growth factor receptor mutation status of exon 19 and 21 in lung adenocarcinoma[J]. Sci Rep, 2017, 7(1):364.
doi: 10.1038/s41598-017-00511-2 URL |
[17] |
Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016, 26(1): 32-42.
doi: 10.1007/s00330-015-3814-0 URL |
[18] |
Wang H, Schabath MB, Liu Y, et al. Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰlung adenocarcinoma and their prognostic value[J]. Clin Lung Cancer, 2016, 17(4):271-278.
doi: 10.1016/j.cllc.2015.11.002 pmid: 26712103 |
[19] |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14):3922-3930.
doi: 10.1158/0008-5472.CAN-17-0122 pmid: 28566328 |
[20] | Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41):e1753. |
[21] |
Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2):321-325.
doi: 10.1016/j.lungcan.2015.09.018 pmid: 26424208 |
[22] |
Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: A pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6:33860.
doi: 10.1038/srep33860 pmid: 27645803 |
[23] |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
doi: 10.1038/ncomms5006 pmid: 24892406 |
[24] |
Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization[J]. Radiology, 2014, 272(2):568-576.
doi: 10.1148/radiol.14140789 pmid: 24885982 |
[25] |
Lee Y, Lee HJ, Kim YT, et al. Imaging characteristics of stage Ⅰ non-small cell lung cancer on CT and FDG-PET: relationship with epidermal growth factor receptor protein expression status and survival[J]. Korean J Radiol, 2013, 14(2):375-383.
doi: 10.3348/kjr.2013.14.2.375 URL |
[26] |
Mattonen SA, Palma DA, Johnson C, et al. Detection of local gancer recurrence after stereotactic ablative radiation therapy for lung cancer: Physician performance versus radiomic assessment[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5):1121-1128.
doi: 10.1016/j.ijrobp.2015.12.369 URL |
[27] |
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J] .Radiother Oncol, 2015, 114(3):345-350.
doi: 10.1016/j.radonc.2015.02.015 pmid: 25746350 |
[28] | Starkov P, Aguilera TA, Golden DI, et al. The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy[J]. Br J Radiol, 2019, 92(1094): 20180228. |
[29] |
Chaddad A, Desrosiers C, Toews M, et al. Predicting survival time of lung cancer patients using radiomic analysis[J]. Oncotarget, 2017, 8(61):104393-104407.
doi: 10.18632/oncotarget.22251 URL |
[1] | YANG Tian, JI Xiang, NIU Jianmei, KONG Xiaoxiao, LV Mingli. Application of 2D-ultrasonography in prenatal assessment of fetal thymus development [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(05): 471-474. |
[2] | QIAN Le, JIANG Meijiao, YANG Bowen, CHEN Hui. The ultrasonic features and diagnostic performance of ultrasound for ovarian cystadenofibroma and adenofibroma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 161-167. |
[3] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 610-612. |
[4] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 626-629. |
[5] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 630-637. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 487-490. |
[7] | LI Min, LIU Jun, WANG Zhiqian, ZHAN Weiwei. Research on acoustic radiation force impulse imaging in quantitative assessment of testicular stiffness in non-sterility varicocele patients [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 543-547. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 491-495. |
[9] | WANG Zhiqian, LIU Jun, LI Min, ZHAN Weiwei. Ultrasonographic features of proximal deferent duct in congenital absence of vas deferens [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(04): 428-431. |
[10] | FENG Wei, ZHU Haohui. Value of color Doppler ultrasonography in evaluation of stenosis and thrombosis of autogenous arteriovenous fistula [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 360-364. |
[11] | LI Xinyue, TAN Lin, CHAI Weimin. Value of MRI combined with DWI in differential diagnosis of benign papillary lesions with malignant papillary lesions of breast [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 301-306. |
[12] | LI Qinqin, YE Tingjun, MAO Minjing. A contrast analysis of thyroid ultrasound-guided fine needle aspiration cytology and thyroid ultrasound imaging reporting and data system [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(06): 607-611. |
[13] | LI Xudong, LIN Xiaozhu, FANG Weihuan, XIE Huanhuan, CHEN Nan, CHAI Weimin, YAN Fuhua, CHEN Kemin. Application of texture analysis of MR imagings in grading of pancreatic neuroendocrine neoplasms [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(06): 601-606. |
[14] | LI Junwei, XIA Hanbing, ZHAO Hongli, LIU Shuxia. Predictive value of epicardial adipose tissue thickness detected by ultrasonography for coronary artery disease [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(03): 324-327. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(03): 250-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||