 
  
	Journal of Diagnostics Concepts & Practice ›› 2020, Vol. 19 ›› Issue (02): 104-110.doi: 10.16150/j.1671-2870.2020.02.002
• Experts forum • Previous Articles Next Articles
Received:2019-10-30
															
							
															
							
															
							
																	Online:2020-04-25
															
							
																	Published:2020-04-25
															
						CLC Number:
 
													
													
| 指标 | CNL | aCML | CMML | MDS/MPN-U | 
|---|---|---|---|---|
| 白细胞计数 | ≥25×109/L | ≥13×109/L(由中性粒细胞 及前体细胞增多所致) | (>50%的患者可有白细胞增 多,其余正常或轻度降低) | 存在MPN的临床和 形态学特征,如血 小板计数≥450×109/L; 伴骨髓巨核细胞增生和 (或)白细胞≥13×109/L; 存在MDS一个亚型的 临床和形态学特征 (除外5q-综合征); 原始细胞<20% | 
| 白细胞分类 | ||||
| 中性粒细胞 | ≥80% | 不确定 | 不确定 | |
| 早、中、晚幼粒细胞 | <10% | ≥10% | (通常<10%) | |
| 单核细胞 | <1×109/L | 计数无或轻度增多,但百分 比<10% | ≥1×109/L,且百分比≥10% | |
| 嗜碱性粒细胞 | 不确定 | 计数无或轻度增多,但百分 比<2% | 不确定 | |
| 原始细胞 | 罕见 | <20% | <20% | |
| 粒系发育异常 | 无 | 有,包括染色质异常聚集 | (多见,如核分叶减少或异常 分叶、胞质颗粒减少) | |
| 骨髓增生 | 高度增生,中性粒细胞比例 和数量增多 | 高度增生,粒系明显增生 | (>75%患者呈骨髓高度增生) | |
| 血细胞发育异常 | 中性粒细胞成熟正常 | 粒系,伴或不伴红系、巨核系 | ≥1个髓系 | |
| 原始细胞 | <5% | <20% | <20% | |
| 排除PDGFRA、PDGFRB、 FGFR1、PCM1-JAK2 | 需要 | 需要 | 需要 | 需要 | 
| 排除CML、PMF、PV、ET | 需要 | 需要 | 需要 | 需要 | 
| 染色体异常 | 23%~33%有克隆性改变, 常见+8、20q-、+21、11q-、 12p-等 | 20%~80%有克隆性异常, 常见+8、20q-、i(17q)等 | 20%~40%有克隆性异常, 常见+8、-Y、复杂异常、 -7/7q-、i(17q)等 | 30%有克隆性改变, 常见+8、-77q-、20q-、 i(17q)等 | 
| 基因突变 | ||||
| CSF3R T618I或 其他活化型突变* | 64%~100% | 22% | 3% | 罕见 | 
| SETBP1 | 14%~56% | 7%~48% | 6%~15% | 9% | 
| ASXL1 | 30%~77% | 20%~81% | 40%~69% | 未知 | 
| U2AF1 | 15% | 15% | 5%~24% | 14% | 
| TET2 | 20%~29% | 16%~37% | 48%~58% | 30% | 
| SRSF2 | 21%~44% | 12%~40% | 24%~46% | 15% | 
| EZH2 | 20% | 8%~30% | 5%~7% | 10% | 
| GATA2 | 13% | 15% | 14% | 未知 | 
| PTPN11 | 10% | 0 | 3% | 未知 | 
| RAS | 10% | 29%~35% | 19%~48% | 10% | 
| JAK2 | 8% | 4%~11% | 3%~8% | 19%~22% | 
| CBL | 5% | 8%~11% | 10%~17% | >10% | 
| ABL1 | 5% | 4% | 0 | 未知 | 
| DNMT3A | 5% | 7% | 2%~10% | 4% | 
| CUX1 | 5% | 11% | 0 | 未知 | 
| SMC1A | 5% | 0 | 3% | 未知 | 
| WT1 | 5% | 0 | 0 | 1% | 
| ETNK1 | 3% | 4~8% | 0 | 未知 | 
| RUNX1 | 3% | 6%~12% | 15%~28% | 14% | 
| FLT3 | 0 | 5%~7% | 0 | 未知 | 
| CEBPA | 0 | 0~4% | 0~20% | 4% | 
| ZRSR2 | 3% | 4% | 3%~8% | 未知 | 
| SF3B1 | 3% | 0 | 0~6% | 未知 | 
| IDH1/IDH2 | 3% | 0 | 0~5% | 5%~10% | 
 
													
													
| 指标 | PV | ET | PMF | MDS/MPN-RS-T | 
|---|---|---|---|---|
| 血红蛋白 | 增高 | 多正常 | 降低 | 降低 | 
| 原始细胞 | <1%(外周), <5%(骨髓) | <1%(外周), <5%(骨髓) | 早期不增加 | <1%(外周), <5%(骨髓) | 
| 骨髓增生 | 三系增生 | 巨核系显著增生 | 早期增生,晚期减少,红系减少 | 红系增生 | 
| 血细胞发育异常 | 无 | 红系无异常 | 巨核细胞显著异常,红系无异常 | 红系异常,有或无粒系、 巨核系异常 | 
| 血小板计数(×109/L) | ≥450(53%) | ≥450 | 早期增加,晚期减少 | ≥450 | 
| 环形铁粒幼细胞(RS) | 无 | 可有 | 可有 | ≥15% | 
| 纤维化 | 10%~19% | <5% | 有 | 部分患者有 | 
| 基因突变 | ||||
| JAK2 | 96% | 52%~55% | 49%~65% | 50%~71% | 
| CALR | 0% | 20%~26% | 15%~25% | 0~12.5% | 
| MPL | 0% | 4%~10% | 3%~5% | 1%~5% | 
| TET2 | 10%~20% | 5%~16% | 10%~20% | 23%~25% | 
| ASXL1 | 5%~10% | 3%~11% | 13%~40% | 14%~15% | 
| DNMT3A | 5%~7% | 1%~6% | 2%~15% | 15%~17% | 
| SF3B1 | 罕见 | 5% | 3%~10% | 72%~93% | 
| U2AF1 | 罕见 | 0~2% | 3%~20% | 4.5% | 
| SH2B3 | 罕见 | 0~3% | 5% | 未知 | 
| IDH1/IDH2 | 1%~2% | 1%~2% | 1%~5% | 未知 | 
| CBL | 1% | 1%~2% | 5%~6% | 4% | 
| TP53 | 1% | 1%~2% | 1% | 未知 | 
| EZH2 | <5% | 3% | 5%~10% | 未知 | 
| SRSF2 | 罕见 | 2% | 3%~20% | 7% | 
| SETBP1 | 未知 | 2% | 6% | 1% | 
| RUNX1 | 3%~5% | 2%~5% | 5% | 未知 | 
| [1] | Swerdlow SH, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues[M].. Revised 4th ed. Lyon: International Agency for Research on Cancer, 2017. | 
| [2] | Baccarani M, Castagnetti F, Gugliotta G, et al.  The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview[J]. Leukemia, 2019, 33(5):1173-1183. doi: 10.1038/s41375-018-0341-4 pmid: 30675008 | 
| [3] | Arun AK, Senthamizhselvi A, Mani S, et al.  Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients[J]. Int J Lab Hematol, 2017, 39(3):235-242. doi: 10.1111/ijlh.12616 pmid: 28035733 | 
| [4] | Branford S, Rudzki Z, Hughes TP. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron 1b in a patient with Philadelphia-positive chronic myeloid leukaemia[J]. Br J Haematol, 2000, 109(3):635-637. doi: 10.1046/j.1365-2141.2000.02042.x URL | 
| [5] | Soderquist CR, Ewalt MD, Czuchlewski DR, et al.  Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathology group[J]. Mod Pathol, 2018, 31(5):690-704. doi: 10.1038/modpathol.2017.182 URL | 
| [6] | Martin-Cabrera P, Haferlach C, Kern W, et al.  BCR-ABL1-positive and JAK2 V617F-positive clones in 23 patients with both aberrations reveal biologic and clinical importance[J]. Br J Haematol, 2017, 176(1):135-139. doi: 10.1111/bjh.13932 URL | 
| [7] | Pieri L, Spolverini A, Scappini B, et al.  Concomitant occurrence of BCR-ABL and JAK2 V617F mutation[J]. Blood, 2011, 118(12):3445-3446. doi: 10.1182/blood-2011-07-365007 pmid: 21940831 | 
| [8] | Bader G, Dreiling B. Concurrent JAK2-positive myeloproliferative disorder and chronic myelogenous leukemia: A novel entity? A case report with review of the literature[J]. J Investig Med High Impact Case Rep, 2019, 7:2324709619832322. | 
| [9] | Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and mana-gement[J]. Am J Hematol, 2018, 93(4):578-587. doi: 10.1002/ajh.24983 URL | 
| [10] | Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria[J]. Blood Cancer J, 2018, 8(2):19. doi: 10.1038/s41408-018-0049-8 URL | 
| [11] | Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia[J]. Blood, 2017, 129(6):704-714. doi: 10.1182/blood-2016-10-695973 URL | 
| [12] | Valent P, Klion AD, Horny HP, et al.  Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes[J]. J Allergy Clin Immunol, 2012, 130(3):607-612. doi: 10.1016/j.jaci.2012.02.019 pmid: 22460074 | 
| [13] | Cross NCP, Hoade Y, Tapper WJ, et al.  Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia[J]. Leukemia, 2019, 33(2):415-425. doi: 10.1038/s41375-018-0342-3 URL | 
| [14] | Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2019, 94(1):133-143. doi: 10.1002/ajh.25303 pmid: 30281843 | 
| [15] | Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations 2000-2018[J]. BMC Cancer,2019, 19(1):590. doi: 10.1186/s12885-019-5764-4 URL | 
| [16] | Delic S, Rose D, Kern W, et al.  Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera[J]. Br J Haematol, 2016, 175(3):419-426. doi: 10.1111/bjh.14269 URL | 
| [17] | Tefferi A, Lasho TL, Guglielmelli P, et al.  Targeted deep sequencing in polycythemia vera and essential thrombocythemia[J]. Blood Adv, 2016, 1(1):21-30. doi: 10.1182/bloodadvances.2016000216 pmid: 29296692 | 
| [18] | Senín A, Fernández-Rodríguez C, Bellosillo B, et al.  Non-driver mutations in patients with JAK2 V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up[J]. Ann Hematol, 2018, 97(3):443-451. doi: 10.1007/s00277-017-3193-5 URL | 
| [19] | Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al.  Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms[J]. Blood, 2016, 127(3):325-332. doi: 10.1182/blood-2015-07-661835 pmid: 26423830 | 
| [20] | Cabagnols X, Favale F, Pasquier F, et al.  Presence of atypical thrombopoietin receptor(MPL) mutations in triple-negative essential thrombocythemia patients[J]. Blood, 2016, 127(3):333-342. doi: 10.1182/blood-2015-07-661983 pmid: 26450985 | 
| [21] | 鞠满凯, 付荣凤, 李慧媛, 等. 三阴性血小板增多症的患者特点及靶向基因测序分析[J]. 中国实验血液学杂志, 2018, 26(4):1137-1145. | 
| [22] | Yoshimitsu M, Hachiman M, Uchida Y, et al.  Essential thrombocytosis attributed to JAK2-T875N germline mutation[J]. Int J Hematol, 2019, 110(5):584-590. doi: 10.1007/s12185-019-02725-8 pmid: 31428969 | 
| [23] | Tefferi A, Nicolosi M, Mudireddy M, et al.  Driver mutations and prognosis in primary myelofibrosis: Mayo-careggi MPN alliance study of 1,095 patients[J]. Am J Hematol, 2018, 93(3):348-355. doi: 10.1002/ajh.24978 pmid: 29164670 | 
| [24] | Caponetti GC, Bagg A. Genetic studies in the evaluation of myeloproliferative neoplasms[J]. Semin Hematol, 2019, 56(1):7-14. doi: S0037-1963(18)30033-7 pmid: 30573049 | 
| [25] | Tefferi A, Lasho TL, Finke CM, et al.  CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons[J]. Leukemia, 2014, 28(7):1472-1477. doi: 10.1038/leu.2014.3 pmid: 24402162 | 
| [26] | Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management[J]. Am J Hematol, 2018, 93(12):1551-1560. doi: 10.1002/ajh.25230 pmid: 30039550 | 
| [27] | Lin Y, Liu E, Sun Q, et al.  The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms[J]. Am J Clin Pathol, 2015, 144(1):165-171. doi: 10.1309/AJCPALP51XDIXDDV URL | 
| [28] | Iurlo A, Gianelli U, Cattaneo D, et al.  Impact of the 2016 revised WHO criteria for myeloproliferative neoplasms, unclassifiable: Comparison with the 2008 version[J]. Am J Hematol, 2017, 92(4):E48-E51. doi: 10.1002/ajh.24657 URL | 
| [1] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 434-437. | 
| [2] | CHANG Rui, YANG Yanzhao, KONG Deyan, XU Jiaxu, CAO Qiqi, YANG Wenjie, YAN Fuhua, DONG Haipeng. Application of different tube voltage-current protocol in combination with KARL iterative reconstruction in CT chest scanning for novel coronavirus pneumonia screening [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 182-187. | 
| [3] | YE Chenglin, YAO Yonghua, CHEN Zhen, JIA Lin. Application of plastic-embedded bone marrow biopsy in diagnosing myelodysplastic syndrome with thrombocytopenia [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 177-181. | 
| [4] | XIAO Chao, TAO Ying, SONG Luxi, ZHAO Youshan, WU Lingyun, CHANG Chunkang. Clinical analysis of 88 patients with myeloproliferative neoplasm [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 115-121. | 
| [5] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 111-114. | 
| [6] | LU Hongyu, CAO Yafeng, GU Jun, WANG Jing, CHEN Mei, SONG Luxi. Diagnostic value of nerve electrophysiological studies for Bortezomib-induced peripheral neuropathy in multiple myeloma patients [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(06): 640-644. | 
| [7] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(06): 623-629. | 
| [8] | SONG Dandan, CHANG Chunkang, GUO Juan, XU Feng, ZHAO Youshan, WU Lingyun. The abnormal percentage of bone marrow macrophages and its clinical significances in myelodysplastic syndromes [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 439-443. | 
| [9] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 123-126. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||