内科理论与实践 ›› 2022, Vol. 17 ›› Issue (06): 482-485.doi: 10.16138/j.1673-6087.2022.06.012
收稿日期:
2022-04-28
出版日期:
2022-12-30
发布日期:
2023-02-27
通讯作者:
崔小川 E-mail: QIN Xue, GUO Hua, ZHANG Yunyun, et al()
Received:
2022-04-28
Online:
2022-12-30
Published:
2023-02-27
中图分类号:
秦雪, 郭华, 张云云, 崔小川. C1q肿瘤坏死因子相关蛋白3与代谢相关疾病的研究进展[J]. 内科理论与实践, 2022, 17(06): 482-485.
QIN Xue, GUO Hua, ZHANG Yunyun, et al. Progress of research on complement-C1q/tumor necrosis factor-related protein and metabolism-related disease[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 482-485.
[1] |
Wong GW, Wang J, Hug C, et al. A family of Acrp30/adiponectin structural and functional paralogs[J]. Proc Natl Acad Sci U S A, 2004, 101(28): 10302-10307.
doi: 10.1073/pnas.0403760101 URL |
[2] |
Schäffler A, Buechler C. CTRP family: linking immunity to metabolism[J]. Trends Endocrinol Metab, 2012, 23(4): 194-204.
doi: 10.1016/j.tem.2011.12.003 URL |
[3] | Li Y, Wright GL, Peterson JM. C1q/TNF-related protein 3 (CTRP3) function and regulation[J]. Compr Physiol, 2017, 3(7): 863-878. |
[4] |
Peterson JM, Wei Z, Wong GW. C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output[J]. J Biol Chem, 2010, 285(51): 39691-39701.
doi: 10.1074/jbc.M110.180695 pmid: 20952387 |
[5] |
Maeda T, Jikko A, Abe M, et al. Cartducin, a paralog of Acrp30/adiponectin, is induced during chondrogenic differentiation and promotes proliferation of chondrogenic precursors and chondrocytes[J]. J Cell Physiol, 2006, 206(2): 537-544.
pmid: 16155912 |
[6] |
Li X, Jiang L, Yang M, et al. GLP-1 receptor agonist increases the expression of CTRP3, a novel adipokine, in 3T3-L1 adipocytes through PKA signal pathway[J]. J Endocrinol Invest, 2015, 38(1): 73-79.
doi: 10.1007/s40618-014-0156-8 pmid: 25149084 |
[7] |
Yagmur E, Otto S, Koek GH, et al. Decreased CTRP3 plasma concentrations are associated with sepsis and predict mortality in critically ill patients[J]. Diagnostics, 2019, 9(2): 63.
doi: 10.3390/diagnostics9020063 URL |
[8] | Li Y, Ozment T, Wright GL, et al. Identification of putative receptors for the novel adipokine CTRP3 using ligand-receptor capture technology[J]. PLoS One, 2016, 11(10): e164593. |
[9] |
Schmid A, Kopp A, Hanses F, et al. The novel adipokine C1q/TNF-related protein-3 is expressed in human adipocytes and regulated by metabolic and infection-related parameters[J]. Exp Clin Endocrinol Diabetes, 2012, 120(10): 611.
doi: 10.1055/s-0032-1323803 URL |
[10] |
Kwon MR, Cress E, Clark WA, et al. The adipokine C1q TNF related protein 3(CTRP3) is elevated in the breast milk of obese mothers[J]. PeerJ, 2018, 6: e4472.
doi: 10.7717/peerj.4472 URL |
[11] | Masoodian SM, Toolabi K, Omidifar A, et al. Increased mRNA expression of CTRP3 and CTRP9 in adipose tissue from obese women[J]. Rep Biochem Mol Biol, 2020, 9(1): 71-81. |
[12] |
Schmid A, Gehl J, Thomalla M, et al. Downregulation of CTRP-3 by weight loss in vivo and by bile acids and incretins in adipocytes in vitro[J]. Int J Mol Sci, 2020, 21(21): 8168.
doi: 10.3390/ijms21218168 URL |
[13] | Wolf RM, Steele KE, Peterson LA, et al. Lower circulating C1q/TNF-related protein-3(CTRP3) levels are asso-ciated with obesity[J]. PLoS One, 2015, 10(7): e133955. |
[14] |
Chen T, Wang F, Chu Z, et al. Serum CTRP3 levels in obese children[J]. Diabetes Metab Syndr Obes, 2019, 12: 1923-1930.
doi: 10.2147/DMSO.S222066 URL |
[15] |
Wagner RM, Sivagnanam K, Clark WA, et al. Divergent relationship of circulating CTRP3 levels between obesity and gender[J]. PeerJ, 2016, 4: e2573.
doi: 10.7717/peerj.2573 URL |
[16] |
Choi KM, Hwang SY, Hong HC, et al. C1q/TNF-related protein-3(CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome[J]. Diabetes, 2012, 61(11): 2932-2936.
doi: 10.2337/db12-0217 URL |
[17] |
Moradi N, Najafi M, Sharma T, et al. Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: a systematic review and meta-analysis[J]. Diabetes Res Clin Pract, 2020, 169: 108453.
doi: 10.1016/j.diabres.2020.108453 URL |
[18] | Li JY, Wu GM, Hou Z, et al. Expression of C1q/TNF-related protein-3 (CTRP3) in serum of patients with gesta-tional diabetes mellitus and its relationship with insulin resistance[J]. Eur Rev Med Pharmacol Sci, 2017, 21(24): 5702-5710. |
[19] |
Ma ZG, Yuan YP, Xu SC, et al. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats[J]. Diabetologia, 2017, 60(6): 1126-1137.
doi: 10.1007/s00125-017-4232-4 URL |
[20] |
Yan Z, Cao X, Wang C, et al. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway[J]. Biochem Pharmacol, 2022, 195: 114745.
doi: 10.1016/j.bcp.2021.114745 URL |
[21] |
Hu TY, Li LM, Pan YZ. CTRP3 inhibits high glucose-induced human glomerular mesangial cell dysfunction[J]. J Cell Biochem, 2019, 120(4): 5729-5736.
doi: 10.1002/jcb.27859 URL |
[22] |
Peterson JM, Seldin MM, Wei Z, et al. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(3): G214-G224.
doi: 10.1152/ajpgi.00102.2013 URL |
[23] |
Zhang J, Xu J, Lin X, et al. CTRP3 ameliorates fructose-induced metabolic associated fatty liver disease via inhibition of xanthine oxidase-associated oxidative stress[J]. Tissue Cell, 2021, 72: 101595.
doi: 10.1016/j.tice.2021.101595 URL |
[24] |
Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
doi: 10.1016/S0140-6736(20)32511-3 pmid: 33894145 |
[25] | Sun BR, Li HY, Wang GP, et al. C1q/tumor necrosis factor-related protein-3 acts as a target treating hepatic fibrosis[J]. Eur Rev Med Pharmacol Sci, 2021, 25(17): 5374-5382. |
[26] |
Zhang J, Zhang B, Cheng Y, et al. Low serum CTRP3 levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus[J]. Cytokine, 2018, 106: 131-135.
doi: S1043-4666(17)30337-X pmid: 29113741 |
[27] |
Zhou W, Wang Y, Wu Y, et al. Serum CTRP3 level is inversely associated with nonalcoholic fatty liver disease: a 3-y longitudinal study[J]. Clin Chim Acta, 2018, 479: 79-83.
doi: S0009-8981(18)30003-2 pmid: 29305845 |
[28] |
Demirtas D, Acıbucu F, Baylan FA, et al. CTRP3 is significantly decreased in patients with primary hyperparathyroidism and closely related with osteoporosis[J]. Exp Clin Endocrinol Diabetes, 2020, 128(3): 152-157.
doi: 10.1055/a-0899-5210 URL |
[29] |
Maghbooli Z, Hossein-Nezhad A, Khoshechin G, et al. Possible association between circulating CTRP3 and knee osteoarthritis in postmenopausal women[J]. Aging Clin Exp Res, 2019, 31(7): 927-934.
doi: 10.1007/s40520-018-1035-5 pmid: 30191454 |
[30] | 林雪, 张军霞, 徐锦秀, 等. C1q/肿瘤坏死因子相关蛋白3对高尿酸大鼠血管内皮的保护作用研究[J]. 中国病理生理杂志, 2020, 36(9):1551-1556. |
[31] | 徐锦秀, 张军霞, 向光大, 等. 血清补体C1q/肿瘤坏死因子相关蛋白3与2型糖尿病患者血尿酸水平的关联[J]. 中华疾病控制杂志, 2020, 24(4): 394-398. |
[32] |
Framnes SN, Arble DM. The bidirectional relationship between obstructive sleep apnea and metabolic disease[J]. Front Endocrinol (Lausanne), 2018, 9: 440.
doi: 10.3389/fendo.2018.00440 URL |
[33] | Kilavuz A, Celikhisar H, Dasdemir Ilkhan G. The association of serum 25(OH) vitamin D level with severity of obstructive sleep apnea syndrome in patients with syndrome Z (the interaction of obstructive sleep apnea with metabolic syndrome)[J]. Metab Syndr Relat Disord, 2021, 19(10): 549-555. |
[34] | 范榕, 白亚丽, 赵雅宁, 等. 血清补体C1q肿瘤坏死因子相关蛋白-3在阻塞性睡眠呼吸暂停低通气综合征加重2型糖尿病患者下肢血管病变中的作用[J]. 中国老年学杂志, 2019, 39(6): 1312-1315. |
[1] | 张梦潇, 孙烁烁, 韦晓, 张少红, 陈国芳, 刘超. 生酮饮食诱导db/db小鼠肝脏脂肪沉积[J]. 内科理论与实践, 2023, 18(01): 56-63. |
[2] | 叶雅芬, 杨颖, 韩峻峰. 脂肪组织衰老的细胞学改变及其分子机制研究进展[J]. 诊断学理论与实践, 2022, 21(05): 650-654. |
[3] | 朱思毅 综述, 陈小松, 沈坤炜 审校. 肥胖与早期乳腺癌预后和辅助治疗疗效的研究进展[J]. 外科理论与实践, 2022, 27(05): 468-472. |
[4] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[5] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[6] | 杨建军, 宋致成, 顾岩. 肥胖合并食管裂孔疝的外科治疗策略[J]. 外科理论与实践, 2021, 26(5): 394-398. |
[7] | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16(06): 373-375. |
[8] | 高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421. |
[9] | 李少博, 杨迪, 韩峻峰. 身体成分变化与非酒精性脂肪性肝病的相关研究进展[J]. 诊断学理论与实践, 2021, 20(01): 104-108. |
[10] | 蔡超强, 孙许龙, 朱晒红. 减重代谢外科在中国——发展与展望[J]. 外科理论与实践, 2020, 25(05): 364-368. |
[11] | 应夏洋, 金佳斌, 沈柏用. 我国减重代谢外科领域中机器人辅助手术技术的应用与发展[J]. 外科理论与实践, 2020, 25(05): 369-372. |
[12] | 花荣, 姚琪远. 减重代谢手术对肥胖型非酒精性脂肪肝治疗的意义[J]. 外科理论与实践, 2020, 25(05): 373-377. |
[13] | 杨建军, 宋致成, 杨董超, 顾岩. 肥胖合并腹壁疝的外科治疗策略[J]. 外科理论与实践, 2020, 25(05): 378-382. |
[14] | 闫文貌, 白日星. 减重代谢术后体重反弹的原因和防治措施[J]. 外科理论与实践, 2020, 25(05): 386-390. |
[15] | 张晨阳, 张弘玮, 韩晓东, 刘伟杰, 于浩泳, 张频. 腹腔镜Roux-en-Y胃旁路术与腹腔镜袖状胃切除术减重与改善代谢紊乱的比较研究[J]. 外科理论与实践, 2020, 25(05): 397-401. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||