内科理论与实践 ›› 2024, Vol. 19 ›› Issue (06): 385-392.doi: 10.16138/j.1673-6087.2024.06.06
收稿日期:
2024-11-12
出版日期:
2024-12-26
发布日期:
2025-03-11
通讯作者:
范凯健 E-mail: 基金资助:
LIU Xiaoxu1, LIU Jinyu2, ZHOU Benyuan3, FAN Kaijian2()
Received:
2024-11-12
Online:
2024-12-26
Published:
2025-03-11
摘要:
目的:探讨紫草素(shikonin)对抑制滑膜细胞增殖及炎症反应的可能机制,并评估其联合低强度脉冲式超声波(low-intensity pulsed ultrasound shockwave, LI-PUS)治疗类风湿性关节炎(rheumatoid arthritis, RA)的可行性。方法:体外实验通过脂多糖(lipopolysaccharide, LPS)诱导小鼠滑膜细胞异常增殖。采用细胞计数试剂(cell counting kit-8, CCK-8)和酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测滑膜细胞的增殖情况和炎症因子以及抗氧化物的表达水平。细胞划痕实验检测滑膜细胞的迁移情况。免疫荧光检测滑膜细胞中核因子κB(nuclear factor kappa B, NF-κB)的表达情况。体内实验通过完全弗氏佐剂诱导小鼠RA模型。40只小鼠平均分为正常组、对照组、紫草素组、紫草素+LI-PUS联合治疗组。记录治疗第12天和24天的小鼠关节炎肿胀指数并检测血清中炎症因子水平。蛋白质印迹法(Western blotting)检测小鼠膝关节滑膜组织中c-Jun氨基端蛋白激酶(c-Jun N-terminal protein kinase, JNK)、胞外信号调节激酶(extracellular signal-regulated kinase,ERK)、NF-κB磷酸化水平。结果:紫草素抑制LPS诱导的滑膜细胞炎症细胞因子和氧化应激。在紫草素不同浓度的干预下,滑膜细胞的迁移均被显著抑制,NF-κB蛋白表达含量有所降低。动物实验结果显示,佐剂诱导的关节炎小鼠关节肿胀评分显著升高,紫草素干预后明显降低。紫草素+LI-PUS组治疗效果良好。紫草素抑制炎症细胞因子表达,白介素(interleukin,IL)-1β显著降低,紫草素+LI-PUS联合治疗抗炎作用极显著。蛋白质印迹法结果显示,对照组ERK、JNK、NF-κB磷酸化程度显著高于正常组,紫草素组、紫草素+LI-PUS联合治疗组均显著抑制,且紫草素+LI-PUS联合治疗组优于紫草素组。结论:紫草素可抑制LPS诱导的滑膜细胞异常增殖,且可通过ERK-JNK/NF-κB信号通路发挥抗关节炎活性,中药联合LI-PUS共同治疗优于单独中药治疗。
中图分类号:
刘晓旭, 刘金渝, 周本源, 范凯健. 紫草素联合低强度脉冲式超声波调节ERK-JNK/NF-κB信号通路抑制关节炎的药理活性研究[J]. 内科理论与实践, 2024, 19(06): 385-392.
LIU Xiaoxu, LIU Jinyu, ZHOU Benyuan, FAN Kaijian. Research on pharmacological activity of shikonin combined with low-intensity pulsed ultrasound to modulate ERK-JNK/NF-κB signaling pathway to inhibit arthritis[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 385-392.
表1
紫草素安全浓度检测(均n=3, $\bar{x}±s$)
紫草素(μmol/mL) | 细胞活力(%) | P |
---|---|---|
0 | 100.00 | |
5 | 97.25±1.58 | 0.955 5 |
10 | 95.25±0.69 | 0.920 6 |
15 | 94.25±1.15 | 0.315 5 |
20 | 93.54±1.06 | 0.077 1 |
25 | 91.24±1.381) | 0.017 7 |
30 | 89.26±1.762) | 0.000 2 |
35 | 81.26±1.262) | <0.000 1 |
40 | 75.25±1.972) | <0.000 1 |
45 | 73.69±1.682) | <0.000 1 |
50 | 66.95±1.822) | <0.000 1 |
[1] | Luo R, Su J, Zhang W, et al. Targeted delivery of NO donor and ROS scavenger for synergistic treatment of rheumatoid arthritis[J]. Biomed Pharmacother, 2024, 174:116540. |
[2] | Li J, Tang RS, Shi Z, et al. Nuclear factor-κB in rheumatoid arthritis[J]. Int J Rheum Dis, 2020, 23(12):1627-1635. |
[3] | Liu C, He L, Wang J, et al. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways[J]. J Ethnopharmacol, 2020, 260:113039. |
[4] | Soeken KL, Miller SA, Ernst E. Herbal medicines for the treatment of rheumatoid arthritis: a systematic review[J]. Rheumatology (Oxford), 2003, 42(5):652-659. |
[5] |
Singh S, Singh TG, Mahajan K, et al. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis[J]. J Pharm Pharmacol, 2020, 72(10):1306-1327.
doi: 10.1111/jphp.13326 pmid: 32812250 |
[6] | Liu FY, Wang MQ, Liu MM, et al. Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway[J]. Phytomedicine, 2023, 116:154857. |
[7] | Guo Y, Zhou M, Mu Z, et al. Recent advances in shikonin for the treatment of immune-related diseases: anti-inflammatory and immunomodulatory mechanisms[J]. Biomed Pharmacother, 2023, 165:115138. |
[8] | Dai Q, Fang J, Zhang FS. Dual role of shikonin in early and late stages of collagen type Ⅱ arthritis[J]. Mol Biol Rep, 2009, 36(6):1597-1604. |
[9] | He L, Luan H, He J, et al. Shikonin attenuates rheumatoid arthritis by targeting SOCS1/JAK/STAT signaling pathway of fibroblast like synoviocytes[J]. Chin Med, 2021, 16(1):96. |
[10] | Yang KY, Chen DL. Shikonin inhibits inflammatory response in rheumatoid arthritis synovial fibroblasts via lncRNA-NR024118[J]. Evid Based Complement Alternat Med, 2015, 2015:631737. |
[11] | Sun WX, Liu Y, Zhou W, et al. Shikonin inhibits TNF-α production through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model[J]. J Nat Med, 2017, 71(2):349-356. |
[12] |
Fu D, Shang X, Ni Z, et al. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis[J]. Exp Ther Med, 2016, 12(4):2735-2740.
pmid: 27703516 |
[13] |
Zachs DP, Offutt SJ, Graham RS, et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis[J]. Nat Commun, 2019, 10(1):951.
doi: 10.1038/s41467-019-08721-0 pmid: 30862842 |
[14] |
Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach[J]. ACS Omega, 2019, 4(13):15567-15580.
doi: 10.1021/acsomega.9b01924 pmid: 31572858 |
[15] | Liao AH, Chung HY, Chen WS, et al. Efficacy of combined ultrasound-and-microbubbles-mediated diclofenac gel delivery to enhance transdermal permeation in adjuvant-induced rheumatoid arthritis in the rat[J]. Ultrasound Med Biol, 2016, 42(8):1976-1985. |
[16] | Jie SS, Sun HJ, Liu JX, et al. Simiao Yong’an decoction ameliorates murine collagen-induced arthritis by modulating neutrophil activities: an in vitro and in vivo study[J]. J Ethnopharmacol, 2023, 305:116119. |
[17] | Pinto BI, Cruz ND, Lujan OR, et al. In vitro scratch assay to demonstrate effects of arsenic on skin cell migration[EB/J]. J Vis Exp, 2019. https://pmc.ncbi.nlm.nih.gov/articles/PMC7537821/. |
[18] | Bai Y, Li Y, Marion T, et al. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production[J]. J Autoimmun, 2021, 116:102564. |
[19] | Wang M, Su T, Sun H, et al. Regulating Th17/Treg balance contributes to the therapeutic effect of ziyuglycoside i on collagen-induced arthritis[J]. Int J Mol Sci, 2022, 23(24):16105. |
[20] | Wang Y, Yan H, et al. An integrated network pharmacology approach reveals that Darutigenol reduces inflammation and cartilage degradation in a mouse collagen-induced arthritis model by inhibiting the JAK-STAT3 pathway[J]. J Ethnopharmacol, 2023, 314:116574. |
[21] | Lin Z, Miao J, Zhang T, et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy[J]. Aging Cell, 2021, 20(2):e13306. |
[22] | Sun K, Hou L, Guo Z, et al. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy[J]. Free Radic Biol Med, 2023, 200:87-101. |
[1] | 叶启程 聂萍.
抑制细胞衰老在骨关节炎软骨再生治疗中的研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(6): 597-. |
[2] | 许苑晶, 高海峰, 吴云成, 柳毅浩, 张子砚, 黄承兰, 王赞博, 刘同有, 王彩萍, 缪伟强, 王金武. 定制式增材制造膝关节矫形器间室减荷效果的有限元分析[J]. 上海交通大学学报, 2023, 57(5): 560-569. |
[3] | 郦源, 张乐, 殷翰林, 郑冰, 吕良敬. 抗核抗体在类风湿关节炎中的临床研究进展[J]. 诊断学理论与实践, 2023, 22(06): 579-586. |
[4] | 李笑石, 秦越. 影像学技术在痛风诊断及疾病监测中的应用研究进展[J]. 诊断学理论与实践, 2023, 22(03): 311-318. |
[5] | 肖剑伟, 蔡旭, 黄新民, 洪易炜, 汪荣盛. LINC01465在痛风性关节炎中的表达及临床意义[J]. 内科理论与实践, 2023, 18(02): 92-98. |
[6] | 戴生明, 鲍春德, 邹和建, 杨程德, 何东仪, 姜林娣, 管剑龙, 叶霜, 陈盛, 薛愉, 吴歆, 顾晓丽, 李跃华, 徐沪济. 应用磁共振成像诊断和评估骶髂关节炎的专家共识[J]. 内科理论与实践, 2023, 18(02): 65-69. |
[7] | 刁雪红, 申艳, 陈林, 詹嘉, 方靓, 蔡剑飞, 陈悦. 超声微血流成像技术在临床缓解期类风湿性关节炎诊断中的应用[J]. 诊断学理论与实践, 2022, 21(05): 575-580. |
[8] | 王宏智, 袁昳玮. 类风湿关节炎的慢病管理[J]. 内科理论与实践, 2022, 17(03): 202-207. |
[9] | 赵东宝. 风湿病继发骨质疏松症研究进展[J]. 内科理论与实践, 2022, 17(03): 181-185. |
[10] | 贾卓璇 张文杰. 巨噬细胞在骨关节炎中的调控机制[J]. 组织工程与重建外科杂志, 2021, 17(5): 442-. |
[11] | 郭天赐 刘爱峰 陈继鑫 余伟杰. 间充质干细胞源性外泌体对骨性关节炎治疗机制的研究进展[J]. 组织工程与重建外科杂志, 2021, 17(3): 262-. |
[12] | 周观明 刘效仿 管明强 刘少华. 改良内侧开放式胫骨高位截骨术治疗膝内侧间室骨性关节炎 #br#[J]. 组织工程与重建外科杂志, 2021, 17(1): 54-. |
[13] | 耿佳, 星月, 胡扬帆, 司莉萍, 钟京谕, 郭瀚, 姚伟武. 同步辐射X线显微断层成像在兔膝骨关节炎软骨及软骨下骨三维成像中的应用研究[J]. 诊断学理论与实践, 2020, 19(03): 238-242. |
[14] | 刘延群,贾立涛,刘春燕,陈洁,周广东. JNK抑制剂对软骨细胞外基质合成的作用研究[J]. 组织工程与重建外科杂志, 2019, 15(2): 77-80. |
[15] | 袁昳玮, 顾娟芳, 费张丽, 杨明峰, 王艺文, 王宏智. 程序性细胞死亡因子5在活动性类风湿关节炎患者中的水平变化[J]. 诊断学理论与实践, 2018, 17(04): 453-456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||